
A Study of Keystroke Data in Two Contexts: Written Language
and Programming Language Influence Predictability of

Learning Outcomes
John Edwards

john.edwards@usu.edu
Utah State University

Logan, Utah

Juho Leinonen
juho.leinonen@helsinki.fi

University of Helsinki
Helsinki, Finland

Arto Hellas
arto.hellas@aalto.fi

Aalto University
Espoo, Finland

ABSTRACT
We study programming process data from two introductory pro-
gramming courses. Between the course contexts, the programming
languages differ, the teaching approaches differ, and the spoken
languages differ. In both courses, students’ keystroke data – times-
tamps and the pressed keys – are recorded as students work on
programming assignments. We study how the keystroke data differs
between the contexts, and whether research on predicting course
outcomes using keystroke latencies generalizes to other contexts.
Our results show that there are differences between the contexts
in terms of frequently used keys, which can be partially explained
by the differences between the spoken languages and the program-
ming languages. Further, our results suggest that programming
process data that can be collected non-intrusive in-situ can be used
for predicting course outcomes in multiple contexts. The predic-
tive power, however, varies between contexts possibly because the
frequently used keys differ between programming languages and
spoken languages. Thus, context-specific fine-tuning of predictive
models may be needed.

CCS CONCEPTS
• Social and professional topics→ Computing education; CS1; •
Computing methodologies → Supervised learning by classifica-
tion.

KEYWORDS
keystroke analysis, digraphs, keystroke data, programming process
data, predicting performance, educational data mining

ACM Reference Format:
John Edwards, Juho Leinonen, and Arto Hellas. 2020. A Study of Keystroke
Data in Two Contexts: Written Language and Programming Language
Influence Predictability of Learning Outcomes. In The 51st ACM Technical
Symposium on Computer Science Education (SIGCSE ’20), March 11–14, 2020,
Portland, OR, USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.
1145/3328778.3366863

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE ’20, March 11–14, 2020, Portland, OR, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6793-6/20/03. . . $15.00
https://doi.org/10.1145/3328778.3366863

1 INTRODUCTION
Learning and teaching happens in various contexts across the world.
Classrooms with chalkboards may be the primary context associ-
ated with learning in some places, while in some other locations,
learning activities may primarily be organized in small groups or
through apprenticeships without classrooms. The way teaching is
organized influences learning outcomes [12]. The situation is simi-
lar in learning and teaching programming: programming is taught
all around the world, with numerous spoken languages, in numer-
ous programming languages, with numerous teaching approaches,
and with varying learning outcomes [4, 18, 31].

In addition to learning outcomes, contextual differences influ-
ence how research results transfer from one context to another [14].
A result from one context may be applicable to another context
immediately, but it can also be the case that an approach has limited
value in another context [27]. This could be due to the data and the
context where the data is produced, the methodology, or even the
application of the methodology or used libraries [14].

Recently, analysis of student keystrokes has received attention
within the computing education research community [19]. Research
has suggested that students can be accurately identified based solely
on their keystrokes [23]. Similarly, keystroke data has been used to
distinguish high and low performing students [21, 30]: such work
has mainly focused on Java as the programming language.

Using keystroke data from two programming courses with dif-
ferent teaching languages, programming languages, and teaching
approaches, we study to what extent do keystroke data generalize
across contexts. Methodologically, we partially replicate the work
by Thomas et al. [30] and Leinonen et al. [21], further extending
the work by a qualitative analysis of the keystroke data.

This study is motivated by the problem of replicability. In general,
replication studies in CS education are scarce [11]. While there is
a need for more studies that seek to replicate research findings
in other contexts [14], there are also issues with how replication
studies are valued and consequently preferred [1]. Evidence of the
(lack of) generalizability of research may allow the community as
a whole to identify tacit factors that influence research outcomes.

This article is organized as follows. In Section 2, we briefly re-
view work on predicting programming performance, keystroke
analytics, and their intersection. This is followed by the method-
ology, including a description of the contexts, data, and research
questions. In Section 4, we outline the results, which are further
discussed in Section 5. Finally, in Section 6, we conclude the article
and outline possible directions for future work.

https://doi.org/10.1145/3328778.3366863
https://doi.org/10.1145/3328778.3366863
https://doi.org/10.1145/3328778.3366863

2 RELATEDWORK
2.1 Predicting Programming Performance
There exists a vast body of research into predicting academic per-
formance [13]. Such studies range from identifying factors that
contribute towards course outcomes to developing and improving
methodologies that are used for predicting course outcomes. Infor-
mation on students at risk of possible drop-out is however rarely
used for pedagogical interventions [13]. This could be partially due
to the workload required to conduct such studies – in the past, many
of such studies have been based on information collected through
e.g. surveys or through other means that require effort [13].

Recently, predicting students’ performance using data collected
from the programming process has increased in popularity. For
example, Jadud et al. [15] proposed an approach that uses the oc-
currence of compilation errors in successive compilation events
in predicting course outcomes. This work has been extended by
Watson et al. [35], who added temporal information on how fast
students fix possible compilation errors. Other streams of work on
the topic include using more data from the programming process
including steps needed to solve programming problems as well
as the correctness of the problem [2] and information on runtime
errors [5]. Students’ study behavior has been analyzed also out-
side of the programming environment – for example, Porter et al.
have used clicker data from Peer Instruction courses to identify
struggling students [29].

The granularity of the data influences the information available
within the data [32]. Data from programming environments are col-
lected using multiple granularities: some may only collect students’
submissions, while others may collect every keystroke [14]. This
also influences the predictive models that one can build – construct-
ing e.g. models that use individual key-presses [21] is not possible
when only submissions are available.

2.2 Keystroke Analysis
Keystrokes combined with their timings have been analyzed for
purposes ranging from identifying the individual typing [10, 16,
17, 28], recognizing the emotions of the typist [9], and to inferring
demographic factors of the person typing [3].

Most keystroke analysis approaches rely on building a typing
profile of the person [17]. In the case of identifying someone based
on typing, the typing profile of someone writing is compared to
existing typing profiles to determine the identity of the typist. The
analysis is usually based on how fast a person types specific char-
acter pairs, or digraphs [6, 10, 23]. A digraph is a pair of adjacent
characters. For example, the word good has three digraphs: go, oo,
and od. A typing profile usually contains the average digraph laten-
cies for a person, i.e. how fast on average the person types different
character pairs.

The context of typing can affect identification accuracies. Villani
et al. [34] had people write on both laptop and desktop computers
and found that when the same keyboard was used, identification
accuracies were relatively high (> 90%), but when people typing
on desktop were being identified based on laptop typing profiles
and vice versa, the accuracy decreased to around 60%. Leinonen
et al. [20] found that identifying students in a programming exam
based on typing profiles from programming assignments is harder

than identifying students within a single context, i.e. during pro-
gramming assignments. In a similar fashion, Peltola et al. [26] stud-
ied how the type of text being written affects identification. They
built typing profiles of students during programming assignments
and examined how well students can be identified in a program-
ming exam and when writing essays in natural language. Their
results show that identification accuracies decrease when the type
of text is changed between building the typing profiles and identifi-
cation, in their case, when identifying students writing an essay in
natural language based on typing profiles built from programming
keystrokes. Thus, when predicting how students will perform based
on keystrokes, the context might affect the results.

2.3 Programming Performance and Keystrokes
Thomas et al. [30] examined using keystroke timings to infer stu-
dents’ programming performance. They divided digraphs into cat-
egories based on the characters of the digraph. They found that
specific digraph types correlate moderately with students’ exam
scores. The categories with the most predictive power were numeric
digraphs (both characters are numbers), digraphs where one char-
acter is a browsing character (e.g. arrow keys), and “edge” digraphs
where both characters are from different categories.

Leinonen et al. [21] partially replicated Thomas et al.’s experi-
ment and extended it by also studying to what extent students’ prior
programming experience could be automatically inferred based on
their typing. Similar to Thomas et al., they found that numeric
digraphs and “edge” digraphs had the best predictive power. Ad-
ditionally, they found that both students’ exam performance and
students’ previous programming experience can be inferred partly
based on their typing – better performing students and students
with more previous programming experience were faster at typ-
ing specific digraphs that are related to programming (e.g. i+ and
digraphs containing special characters such as {} and ||).

3 METHODOLOGY
3.1 Context and Data
3.1.1 University A. Python keystroke data was collected at a mid-
sized public university in the US. Data was collected during the
first eight weeks of a CS1 course using a custom web-based IDE. In
the ninth week students were transitioned to a mainstream Python
IDE without keystroke logging capability. 265 students participated
in the study. There were three sections, two taught by one instruc-
tor and the remaining section taught by a different instructor. In
this paper we report results from five programming assignments,
with each assignment consisting of two projects, for a total of 10
programming projects. Each pair of projects was assigned at the
same time and was due at the same time, but the two assigned tasks
are unrelated. In general, one project is a mathematical calculation
with text-based output, and the other project is a turtle graphics-
based drawing. In the programming environment the development
window has two tabs, one for each project. The student can work
on either project at any time. The projects are manually assessed.

The students at University A complete the programming assign-
ments reported in this paper using an online Python programming
environment called Phanon that logs programming events including

keystrokes, pastes, switches between programming tasks (by click-
ing on a different task tab), and run attempts. Each event is logged
with a timestamp. This paper reports results only on keystrokes.

The outcome variable is student score on the midterm exam,
given ten weeks into the semester, or two weeks after the last of
the keystroke data is collected. The exam is computer-based and
includes multiple choice, true/false, and simple fill in the blank
questions. The fill in the blank questions require short answers, e.g.
“what function outputs text to the screen?” and “what arguments
should be passed to the given function to achieve the following
output?”.

3.1.2 University B. Java keystroke data was collected in a 7-week
CS1 course at a public research-first university in Finland, which is a
Northern European country. The teaching, including materials and
assignments, are given in Finnish. The course population is rather
homogeneous and practically everyone has done their primary and
secondary education in Finland. The course in question had one
weekly lecture and walk-in labs, where students were guided by
the course teacher and a pool of course assistants. A total of 303
students participated in the study.

In the course, students work on tens of programming assign-
ments each week. The assignments are interleaved in the course
material. Whenever a new topic is learned, a handful of program-
ming assignments are worked on to internalize the topic. Several
of the assignments, when combined, build into larger programs.
Programming assignments are completed using NetBeans, which
is a desktop IDE, accompanied with the Test My Code [33] plugin
that collects the keystroke data, downloads course assignments for
students, and provides the capabilities for running, testing, and
submitting the assignments. The assignments are automatically
assessed.

The outcome variable is student score on the final exam given
at the end of the 7-week course. The exam is computer-based and
includes programming assignments similar to the ones that students
have worked on during the course.

The contexts are summarized in Table 1.

3.2 Research Questions and Approach
Our research questions for this study are as follows.
RQ1 How do the contexts differ in terms of collected keystroke

data?
RQ2 To what extent do digraph latencies predict course outcomes

in the studied contexts?
To answer RQ1, we analyze the distributions of keystrokes both

quantitatively and qualitatively, focusing on the differences be-
tween the contexts.

To answer RQ2, we first study correlation of students’ average
digraph latencies (lower value means faster typing) and the out-
come variable. This is followed by the analysis outlined in [21]; we
identify the most frequent digraphs (i.e. character-pairs) and their
average latencies, and then evaluate a Random Forest classifier1 for
predicting course outcomes. As the outcome variable for predicting
performance, we use median split similar to previous studies on

1The following parameters were used: n_estimators=200, criterion="entropy",
max_features="log2", max_depth=10.

Table 1: Summary of contexts

Variable University A University B

Instruction Lectures w/sections Lecture & labs
Language (prog.) Python Java
Language (inst.) English Finnish

Participants 265 303

Environment Web-based Desktop
Projects 10 133
Assessment Manual Automatic

Exam Midterm Final
Exam content MCQ, Fill in the blank Programming

predicting performance [2, 21]. This means that for each student,
we predict whether they will be in the top or the bottom half of
the exam population performance-wise. After the median split, the
group sizes for Java are 150 and 153 (majority classifier accuracy
50.5%), while for Python the group sizes are 130 and 135 (majority
classifier accuracy 50.9%). In addition to reporting classifier accura-
cies, we report Matthew’s Correlation Coefficients (MCCs) of the
classifiers. The analysis is performed using the Scikit-learn [25]
machine learning library for Python.

We only consider students’ digraph latencies that are between
10 and 750 milliseconds similar to previous work [21]. Further, as
the full data has over 5000 different digraphs for Python and over
8000 digraphs for Java, feature selection is used to prune down
the features to avoid overfitting. The SelectKBest feature selection
method (with ANOVA F-values for scoring features) from Scikit-
learn [25] was used to select the top 50 features with the most
predictive power.

To avoid reporting overly positive (or pessimistic) results caused
by a random seed, which influences the outcomes of the predictive
model, we ran evaluations several times using different random
seeds. For the MCCs, data was split into a randomly selected train
and a test set (0.9 / 0.1 split) one hundred times, and for the Random
Forest, we used a tenfold cross-validation and ran the classifier with
ten random seeds. Results are averaged over the runs and we report
the standard deviations in addition to accuracy and MCC.

4 RESULTS
4.1 Differences Between Contexts
Our first research question is how keystroke data differs between
the two contexts. Students at University A had written on average
11879 digraphs (std = 7345) while students at University B had
written on average 38366 digraphs (std = 23441). There was no dif-
ference between the average typing speed of students between the
contexts: students writing Java programs had an average digraph
latency of 221 milliseconds (std = 29) and students writing Python
programs had an average digraph latency of 218 milliseconds (std
= 28).

While the raw typing speed was very similar, the distribution
of digraphs differs between the contexts. Figure 1 shows the dis-
tributions of the most common 16 digraphs (excluding "delete→

i-
>n

e-
>␣

e-
>r

t-
>h

i-
>s

n-
>t

t-
>e

a-
>t

=-
>␣

u-
>k

l-
>u

o-
>r

␣-
>t

k-
>u

␣-
>=

h-
>e

u-
>t

t-
>a

e-
>n

h-
>i

l-
>i

o-
>u

r-
>␣

l-
>e

t-
>␣

e-
>t

digraphs

0.000

0.005

0.010

0.015

fr
ac
ti
on

java
python

Figure 1: Digraph distributions. The y-axis is the fraction
of total keystroke pairs a given digraph accounts for across
all students and assignments in the course. The "delete →

delete" digraph is more frequent by an order of magnitude
than any other digraph (at 0.21 and 0.18 for Java and Python,
respectively) and is omitted from the chart for clarity. The
" " character represents a space.

delete", which was the most common digraph in both contexts by
a large margin). Differences between spoken language (e.g. u →

k being more common in Finnish than in English), programming-
language (e.g. o → r being more common in Python than in Java),
and instructional approach / guidelines to code quality (e.g. = →

␣, i.e. space, being more common at University B than at Univer-
sity A) were observed. These differences are further discussed in
Section 5.1.

4.2 Keystroke Latencies and Course Outcomes
Our second research question is to what extent do digraph laten-
cies predict course outcomes in the studied contexts. We look at
the problem in two ways: first, we look for possible correlation
between average typing speed (measured through average digraph
latencies) and course outcomes, and then evaluate the applicability
of a Random Forest classifier for the task.

As the digraph latencies are not normally distributed, we used
Spearman rank correlation for the first analysis. Looking at the
Spearman rank correlation between average typing speed and per-
formance in the exam, we found that in the Python course, students’
typing speed, as measured by average latencies, had a statistically
significant but very weak correlation r = −0.20 (p = 0.001) with the
exam score. In the Java course, no statistically significant correlation
was observed r = −0.05 (p = 0.44).

Next, we constructed Random Forest classifiers for both contexts.
We first considered predicting the course outcomes of all students,
assigning students who dropped out from the course a 0 from the
exam. When students were divided into two categories based on the
median exam score, the accuracy of the Random Forest classifier
for the Java course was 68%, while the accuracy of the classifier for
the Python course was 62%. The MCC score for Java was 0.39 and
0.29 for Python, indicating weak to very weak correlation.

Subsequently, we considered predicting the course outcomes
for only those students who attended the course exam. In the Java
course, 256 students out of 303 participants attended the exam,
while in the Python course, 263 out of the 265 participants attended
the exam. Here, the accuracy of the Random Forest classifier was
72% for the Java course, while the accuracy of the classifier for the
Python course did not change (62%). The MCC score for Java was

0.40 and 0.25 for Python, indicating weak to very weak correlation.
The results of the predictive modeling are summarized in Table 2.

Finally, we analyzed the top 50 digraphs that provide the most
value for the classifier (listed in Table 3). These digraphs further
illustrate the difference between the programming languages: no-
ticeably fewer special character combinations and numeric combi-
nations are used in the Python context than in the Java context.

5 DISCUSSION
Our first research question that addresses the differences in key-
stroke data in the different contexts is discussed Sections 5.1 and 5.3.
Our second research question that addresses to what extent digraph
latencies work as a predictor of course outcomes, and whether the
work generalizes to different contexts, is discussed in Sections 5.2
and 5.3.

5.1 Contextual Differences in Digraphs
Studying the most common digraphs (shown in Figure 1), we iden-
tified three main differences in digraphs between the contexts. The
results discussed in this section have no obvious link to the dif-
ference in explanatory power between the contexts, but they may
help clarify why digraphs can predict outcomes in the first place.

Native spoken language. The first contextual difference is the
native spoken language of the students. In the Java course the
students were primarily native Finnish speakers, and the materials
and assignments were given in Finnish. This is reflected in the
digraph distribution by the large difference in frequency in the
digraphs "k → u" and "u → k". Both of these digraphs are common
in Finnish but relatively uncommon in English. This difference is
explained by the fact that the Finnish word for "number" is "luku",
a word used frequently in input prompts, output, and comments.

Programming language. The second contextual difference is re-
lated to programming language. The digraph distribution shows
a large difference in the frequency of the digraph "o → r" which
is four times more common in the Python context than the Java
context. This is partially due to Python using the keyword or for
boolean disjunction, whereas Java uses the || characters (which
are nearly non-existent in Python). Another example (not shown in
Figure 1) is "r→ ␣" which is 15 times more common in Python than
Java. This could be because the Java keyword for is often followed
by the (character and Python’s for is followed by a space.

Instruction. The third contextual difference is that of instruction
in the course. For example, in the Java course the instructor encour-
aged students to pad both sides of the = assignment operator with
whitespace while the Python instructors did not. This is reflected
in the "= → ␣" and "␣ → =" digraphs, which are far more prevalent
in the Java course than the Python course. Similarly, the above
mentioned difference between the "r → ␣", which we attributed to
the programming language, could be also due to practices – had
the instructors in the Java context enforced students to use a space
after writing for, the difference could have been more subtle.

Java (all students) Java (exam attendees) Python (all students) Python (exam attendees)

MCC (std) 0.39 (0.17) 0.40 (0.19) 0.29 (0.18) 0.25 (0.18)

Accuracy (std) 68% (7%) 72% (6%) 62% (9%) 62% (9%)
Table 2: Average Matthew’s Correlation Coefficients (MCCs) and 10-fold cross-validation scores, and their standard deviations
in the parentheses. For the MCCs, 100 runs of Random Forest with different random seeds were ran, and for the 10-fold cross-
validation 10 runs with different seeds were run. Scores were calculated separately for all course attendees and only those
students who attended the exam.

Python

⋆ ␣→=
⋆ ␣→\

"→"
"→h
’→t
1→2
2→.
9→0
F→O
I→O

M→A
N→E
N→O
O→N
O→R
R→E
S→e
T→I
U→s
W→o

a→g
a→w
b→l

⋆ ,→-
d→d
del→f
e→h
f→u
g→n
g→u

h→s
l→u
m→s
n→c
n→f
n→n
n→o
o→␣
o→n
p→i

p→u
r→s
t→s
u→a
u→b
u→g
u→i
w→n
x→p
y→s

Java

␣→c
⋆ !→=
⋆ &→ret

’→s
1→.
1→0
1→8
1→9
2→3
2→4

2→5
3→2
4→0
5→0
5→9
8→0
9→1

⋆ :→:
⋆ <→K
⋆ <→L

⋆ <→S
S→E
U→E

⋆ a→>
d→u
d→y
del→9
del→x
del→y
e→q

f→i
f→o

⋆ g→>
g→a
j→i
l→n
ret→i
o→f

⋆ p→<
⋆ r→>

s→␣
s→d
t→␣

⋆ t→<
⋆ t→>

t→V
⋆ u→>

x→u
⋆ {→del
⋆ |→del

Table 3: Top 50 digraph features with the most predictive
power in each of the two contexts (excluding delete →

delete). Digraphs involving special characters are starred.
del is the delete or backspace key, ret is the return, or new-
line, key, and is the spacebar.

5.2 Contextual differences in predicting
outcomes

In this section we discuss contextual differences that may account
for the difference in explanatory power between the Java course
and the Python course.

Course design. The keystroke data from the Java course has more
explanatory power than that of the Python course. One possible
explanation is that the better accuracy is simply because the data
from the Java course is roughly three times the size of the Python
data. This explanation is consistent with the results of Leinonen
et al. [21], where prediction accuracy increased as the teaching term
progressed and the amount of training data increased. Another

explanation that is discussed more in the following section is that
exams in the Java course assess typing skill by requiring the student
to type code whereas there is very little typing of code in the Python
course’s exam. An additional difference in the courses is that more
students dropped out of the Java course before the first exam. This
may have lead to selection bias, with students who dropped out
possibly being more difficult to classify. A final difference that we
note is that the IDE used in the Java course includes autocompletion
whereas the Python IDE does not. It may be that code that can
be autocompleted occurs less frequently in the data, given that
students learn how to use autocompletion.

Difference in programming language. The Java data results in
a higher ratio of digraphs with special characters among high-
performing features than in the Python context (see Table 3) which
we discuss further in the following subsection. An additional differ-
ence is that many of the top-performing Java digraph features are
numerical digraphs (both characters are numbers). This result is
similar to the findings by Leinonen et al. [21] and Thomas et al. [30],
both of which used Java as the programming language (Thomas et
al. also used Ada in addition to Java). Curiously, the effect is less
visible in Python, where only 2 of the top 50 digraphs are numeric
while Java has 12 such features. This difference would seem at-
tributable to the difference in programming language, but it is also
possible that it is a factor of course design, i.e., if the Java course had
more mathematical assignments then it may be that the numeric
digraphs have more power in the Java course simply because they
are more common.

5.3 Insights into digraphs as predictive features
Our results support the hypothesis that digraphs can be used for
predicting course outcomes. Our results also shed further light on
why digraphs may have predictive power:

Conjecture: Some CS1 exams also test students’ ability to type.
This simple explanation is supported at least in part by our results.
The outcome variable in the Java study is the score on the final
exam which includes programming problems similar to those in
the assignments. Thus, in addition to testing a student’s ability to
analyze a problem and design a solution, the exam is also testing
the student’s typing ability. The Python exam requires very little
typing and is not predicted as well by digraph features as the Java
exams, supporting this explanation.

Conjecture: There exist underlying cognitive structures common to
problem solving and typing characters that are uncommon in natural

language. Such structures would have important implications in
understanding the process of writing programs. As seen in Table
3, 15 of the top 50 digraph features in the Java context involve
special characters not commonly used in natural language, while
the Python context has only 3 such digraphs. This is an important
support for the idea that special characters are better predictors and
explains why our Java data had better predictive power than the
Python data, and additionally supports our conjecture regarding
underlying cognition in both problem solving and typing unnatural
text. This idea, however, may not be completely compatible with
research suggesting that computer programming is composed of
distinct skills with very different cognitive loads. Many researchers
break programming into two skills: programming language syntax
construction and problem solving [8, 22, 24] (Du Boulay [7] breaks
problem solving into two additional skills called structures and prag-
matics). Our results suggest that problem solving and construction
of language syntax may be skills that are not mutually exclusive.

Conjecture: Students who are adept at typing are spending less
time on the typing and instead using that time to become fluent in the
other aspects of programming. This conjecture is not supported by
our data. Define time spent typing as the sum of digraph latencies
that are in the range 10 − 750 milliseconds [6, 21] and time spent
not typing as the sum of latencies in the range 751 milliseconds to
5 minutes (if greater then 5 minutes then we consider the student
disengaged). With these definitions, the Python students spent
only 18% of their total programming time typing. Even with a
more generous typing cutoff latency of two seconds, the time spent
typing is still only 30%. With raw typing time taking up such a
small amount of total time we suggest that any small savings in
typing would result in negligible improvement in programming.
These breaks in programming should be further studied, however.

5.4 Limitations
We have shown results from two different contexts, but it is not
certain whether the results would generalize to any other context.
It is possible, for example, that digraphs collected from a Python
course taught in Finnish could have more predictive over the course
outcomes than the one in our study, which was taught in English.

We did not study to what extent the accuracy of the models
change when using data solely, for example, from the first week of
the courses. Thus, it remains an open question whether digraphs
are useful for, for example, early detection of struggling students.

There could be other confounding variables that explain our
results such as students’ previous experience with computers. It is
possible that the predictive power of digraphs is a result of one or
more underlying variables, some of which may also be measured
in other approaches that are used for predicting course outcomes.
No demographic student data, including socioeconomic status, aca-
demic history, or physical/motor impairment, was obtained for this
study, and as such, these could not be studied.

In the analysis, we split students into two categories – high and
low performing students – with a median split. We acknowledge
that this is not ideal as any two students near the median might
end up in either of the two categories.

Finally, the interpretation of digraphs having predictive power
over course outcomes are naturally subjective, as one could consider

only near absolute predictive power as useful. At the same time,
any improvement over a random guess baseline shows some value
indicating that the digraphs could be studied further, and potentially
also incorporated into other models.

6 CONCLUSIONS
In this work, we studied keystroke data from two introductory
programming courses. The courses differ from each others in terms
of pedagogy, spoken language, programming language, number of
assignments, programming environment, and so on.

Our first research question, how do the contexts differ in terms of
collected keystroke data, was answered through analysis of digraph
distributions. We found that specific context differences, e.g., pro-
gramming language, pedagogy, and native spoken language of the
students were exhibited in the distributions. However, somewhat
surprisingly, average typing speed was unaffected by context. We
expected that typing speed in the Python context would be higher
due to Python being closer to typing natural spoken language. An-
other surprising result was that typing speed in the Python context
was correlated with exam score while the Java typing speed showed
no correlation at all. As we do not have an explanation for this result,
it may be a good candidate for future study.

Our second research question, to what extent do digraph latencies
predict course outcomes in the studied contexts, yielded positive re-
sults. The explanatory power of the digraphs is small to moderate;
when distinguishing students over or below the class median, the
accuracy of the constructed Random Forest classifier was 62% for
Python and 72% for Java. While the predictive power of digraphs is
not large, our study showed that at least it is relatively consistent
across two very different contexts.

In answering our second research question we discovered addi-
tional insights into possible reasons why keystroke data in general,
and digraph latencies specifically, are predictive of course outcomes.
We found fairly strong evidence to support the idea that exams may
be unduly assessing student typing ability, evidence including the
fact that the better-predicting Java context included exams that as-
sessed students’ abilities to write code in an IDE. Through analysis
of the best-predicting digraph features we also gained insight into
the possibility that typing text not common in natural language
is linked to other aspects of programming ability. Despite these
insights, we are unable to confidently identify the individual vari-
ables that could explain the differences in the predictive power due
to the notable differences between the contexts. We second the call
from [13], asking for researchers to explicitly outline their research
contexts when reporting outcomes; only through detailed informa-
tion on how the courses are conducted can we draw inferences on
the factors that contribute to the outcomes.

As a part of our future work, we are looking into exploring
the individual contextual factors further. We are interested in how
the spoken language influences how students write programs and
consequently how familiar students are with writing particular
language-specific digraphs. Furthermore, we are looking into tar-
geted practice of digraphs that most influence the predictive models,
which will provide additional information on maturation: to what
extent does learning to type particular digraphs faster influence
the predictive power of the models.

REFERENCES
[1] Alireza Ahadi, Arto Hellas, Petri Ihantola, Ari Korhonen, and Andrew Petersen.

2016. Replication in computing education research: researcher attitudes and
experiences. In Proceedings of the 16th Koli Calling International Conference on
Computing Education Research. ACM, 2–11.

[2] Alireza Ahadi, Raymond Lister, Heikki Haapala, and Arto Vihavainen. 2015.
Exploring machine learning methods to automatically identify students in need
of assistance. In Proceedings of the eleventh annual International Conference on
International Computing Education Research. ACM, 121–130.

[3] David Guy Brizan, Adam Goodkind, Patrick Koch, Kiran Balagani, Vir V Phoha,
and Andrew Rosenberg. 2015. Utilizing linguistically enhanced keystroke dy-
namics to predict typist cognition and demographics. International Journal of
Human-Computer Studies 82 (2015), 57–68.

[4] P Brusilovsky et al. 1994. Teaching Programming to Novices: A Review of
Approaches and Tools. (1994).

[5] Adam S Carter, Christopher D Hundhausen, and Olusola Adesope. 2015. The
normalized programming state model: Predicting student performance in com-
puting courses based on programming behavior. In Proceedings of the eleventh
annual International Conference on International Computing Education Research.
ACM, 141–150.

[6] Paul S Dowland and Steven M Furnell. 2004. A long-term trial of keystroke
profiling using digraph, trigraph and keyword latencies. In IFIP International
Information Security Conference. Springer, 275–289.

[7] Benedict Du Boulay. 1986. Some difficulties of learning to program. Journal of
Educational Computing Research 2, 1 (1986), 57–73.

[8] John M Edwards, Erika K Fulton, Jonathan D Holmes, Joseph L Valentin, David V
Beard, and Kevin R Parker. 2018. Separation of syntax and problem solving
in Introductory Computer Programming. In 2018 IEEE Frontiers in Education
Conference (FIE). IEEE, 1–5.

[9] Clayton Epp, Michael Lippold, and Regan L Mandryk. 2011. Identifying emotional
states using keystroke dynamics. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. ACM, 715–724.

[10] R Stockton Gaines, William Lisowski, S James Press, and Norman Shapiro. 1980.
Authentication by keystroke timing: Some preliminary results. Technical Report.

[11] Qiang Hao, David H. Smith IV, Naitra Iriumi, Michail Tsikerdekis, and Andrew J.
Ko. 2019. A Systematic Investigation of Replications in Computing Education
Research. ACM Trans. Comput. Educ. 19, 4, Article 42 (Aug. 2019), 18 pages.
https://doi.org/10.1145/3345328

[12] John Hattie. 2008. Visible learning: A synthesis of over 800 meta-analyses relating
to achievement. routledge.

[13] Arto Hellas, Petri Ihantola, Andrew Petersen, Vangel V Ajanovski, Mirela Gutica,
Timo Hynninen, Antti Knutas, Juho Leinonen, Chris Messom, and Soohyun Nam
Liao. 2018. Predicting academic performance: a systematic literature review. In
Proceedings Companion of the 23rd Annual ACM Conference on Innovation and
Technology in Computer Science Education. ACM, 175–199.

[14] Petri Ihantola, Arto Vihavainen, Alireza Ahadi, Matthew Butler, Jürgen Börstler,
Stephen H Edwards, Essi Isohanni, Ari Korhonen, Andrew Petersen, Kelly Rivers,
et al. 2015. Educational data mining and learning analytics in programming:
Literature review and case studies. In Proceedings of the 2015 ITiCSE on Working
Group Reports. ACM, 41–63.

[15] Matthew C Jadud. 2006. Methods and tools for exploring novice compilation
behaviour. In Proceedings of the second international workshop on Computing
education research. ACM, 73–84.

[16] Rick Joyce and Gopal Gupta. 1990. Identity authentication based on keystroke
latencies. Commun. ACM 33, 2 (1990), 168–176.

[17] M. Karnan, M. Akila, and N. Krishnaraj. 2011. Biometric personal authentication
using keystroke dynamics: A review. Applied Soft Computing 11, 2 (2011), 1565 –
1573. https://doi.org/10.1016/j.asoc.2010.08.003 The Impact of Soft Computing
for the Progress of Artificial Intelligence.

[18] Theodora Koulouri, Stanislao Lauria, and Robert D Macredie. 2015. Teaching
introductory programming: A quantitative evaluation of different approaches.

ACM Transactions on Computing Education (TOCE) 14, 4 (2015), 26.
[19] Juho Leinonen. 2019. Keystroke Data in Programming Courses. Ph.D. Dissertation.

University of Helsinki.
[20] Juho Leinonen, Krista Longi, Arto Klami, Alireza Ahadi, and Arto Vihavainen.

2016. Typing patterns and authentication in practical programming exams. In
Proceedings of the 2016 ACM Conference on Innovation and Technology in Computer
Science Education. ACM, 160–165.

[21] Juho Leinonen, Krista Longi, Arto Klami, and Arto Vihavainen. 2016. Au-
tomatic Inference of Programming Performance and Experience from Typ-
ing Patterns. In Proceedings of the 47th ACM Technical Symposium on Com-
puting Science Education (SIGCSE ’16). ACM, New York, NY, USA, 132–137.
https://doi.org/10.1145/2839509.2844612

[22] Marcia C Linn. 1985. The cognitive consequences of programming instruction in
classrooms. Educational Researcher 14, 5 (1985), 14–29.

[23] Krista Longi, Juho Leinonen, Henrik Nygren, Joni Salmi, Arto Klami, and Arto
Vihavainen. 2015. Identification of programmers from typing patterns. In Pro-
ceedings of the 15th Koli Calling Conference on Computing Education Research.
ACM, 60–67.

[24] Richard E Mayer, Jennifer L Dyck, and William Vilberg. 1986. Learning to
program and learning to think: what’s the connection? Commun. ACM 29, 7
(1986), 605–610.

[25] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[26] Petrus Peltola, Vilma Kangas, Nea Pirttinen, Henrik Nygren, and Juho Leinonen.
2017. Identification based on typing patterns between programming and free
text. In Proceedings of the 17th Koli Calling International Conference on Computing
Education Research. ACM, 163–167.

[27] Andrew Petersen, Jaime Spacco, and Arto Vihavainen. 2015. An exploration
of error quotient in multiple contexts. In Proceedings of the 15th Koli Calling
Conference on Computing Education Research. ACM, 77–86.

[28] Paulo Henrique Pisani and Ana Carolina Lorena. 2013. A systematic review on
keystroke dynamics. Journal of the Brazilian Computer Society 19, 4 (2013), 573.

[29] Leo Porter, Daniel Zingaro, and Raymond Lister. 2014. Predicting student success
using fine grain clicker data. In Proceedings of the tenth annual conference on
International computing education research. ACM, 51–58.

[30] Richard C Thomas, Amela Karahasanovic, and Gregor E Kennedy. 2005. An
investigation into keystroke latency metrics as an indicator of programming
performance. In Proceedings of the 7th Australasian conference on Computing
education-Volume 42. Australian Computer Society, Inc., 127–134.

[31] Arto Vihavainen, Jonne Airaksinen, and Christopher Watson. 2014. A systematic
review of approaches for teaching introductory programming and their influ-
ence on success. In Proceedings of the tenth annual conference on International
computing education research. ACM, 19–26.

[32] Arto Vihavainen, Matti Luukkainen, and Petri Ihantola. 2014. Analysis of source
code snapshot granularity levels. In Proceedings of the 15th Annual Conference on
Information technology education. ACM, 21–26.

[33] Arto Vihavainen, Thomas Vikberg, Matti Luukkainen, and Martin Pärtel. 2013.
Scaffolding students’ learning using test my code. In Proceedings of the 18th ACM
conference on Innovation and technology in computer science education. ACM,
117–122.

[34] Mary Villani, Charles Tappert, Giang Ngo, Justin Simone, H St Fort, and Sung-
Hyuk Cha. 2006. Keystroke biometric recognition studies on long-text input
under ideal and application-oriented conditions. In 2006 Conference on Computer
Vision and Pattern Recognition Workshop (CVPRW’06). IEEE, 39–39.

[35] Christopher Watson, Frederick WB Li, and Jamie L Godwin. 2013. Predicting
performance in an introductory programming course by logging and analyzing
student programming behavior. In 2013 IEEE 13th International Conference on
Advanced Learning Technologies. IEEE, 319–323.

https://doi.org/10.1145/3345328
https://doi.org/10.1016/j.asoc.2010.08.003
https://doi.org/10.1145/2839509.2844612

	Abstract
	1 Introduction
	2 Related Work
	2.1 Predicting Programming Performance
	2.2 Keystroke Analysis
	2.3 Programming Performance and Keystrokes

	3 Methodology
	3.1 Context and Data
	3.2 Research Questions and Approach

	4 Results
	4.1 Differences Between Contexts
	4.2 Keystroke Latencies and Course Outcomes

	5 Discussion
	5.1 Contextual Differences in Digraphs
	5.2 Contextual differences in predicting outcomes
	5.3 Insights into digraphs as predictive features
	5.4 Limitations

	6 Conclusions
	References

