
Preventing Keystroke Based Identification
in Open Data Sets

Juho Leinonen
University of Helsinki

Department of Computer
Science

Helsinki, Finland
juho.leinonen@helsinki.fi

Petri Ihantola
Tampere University of

Technology
Department of Pervasive

Computing
Tampere, Finland

petri.ihantola@tut.fi

Arto Hellas
University of Helsinki

Department of Computer
Science

Helsinki, Finland
arto.hellas@cs.helsinki.fi

ABSTRACT
Large-scale courses such as Massive Online Open Courses
(MOOCs) can be a great data source for researchers. Ideally,
the data gathered on such courses should be openly available
to all researchers. Studies could be easily replicated and novel
studies on existing data could be conducted. However, very
fine-grained data such as source code snapshots can contain
hidden identifiers. For example, distinct typing patterns that
identify individuals can be extracted from such data. Hence,
simply removing explicit identifiers such as names and student
numbers is not sufficient to protect the privacy of the users
who have supplied the data. At the same time, removing all
keystroke information would decrease the value of the shared
data significantly.

In this work, we study how keystroke data from a program-
ming context could be modified to prevent keystroke latency
based identification whilst still retaining information that can
be used to e.g. infer programming experience. We investigate
the degree of anonymization required to render identification
of students based on their typing patterns unreliable. Then, we
study whether the modified keystroke data can still be used
to infer the programming experience of the students as a case
study of whether the anonymized typing patterns have retained
at least some informative value.

We show that it is possible to modify data so that keystroke
latency based identification is no longer accurate, but the pro-
gramming experience of the students can still be inferred, i.e.
the data still has value to researchers. In a broader context,
our results indicate that information and anonymity are not
necessarily mutually exclusive.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

L@S 2017, April 20 - 21, 2017, Cambridge, MA, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4450-0/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3051457.3051458

CCS Concepts
•Security and privacy → Pseudonymity, anonymity and
untraceability; Data anonymization and sanitization; Pri-
vacy protections; •Information systems → Data mining;
•Social and professional topics→ Computing education;

Author Keywords
data privacy; data anonymization; keystroke dynamics;
programming experience inference; source code snapshots

INTRODUCTION
Nowadays, a lot of data is shared openly for replication studies
and novel analysis on existing data [3, 6, 18]. Still, privacy is-
sues often prevent companies, governments, and (educational)
institutions from sharing the data that they have collected [10].
Sharing non-anonymized data that could be used to identify
individuals would violate the privacy of the users or parties
from which the data has been collected. Anonymizing data by
simply removing parts of the data – attributes – may not be suf-
ficient as latent factors that can be used to identify individuals
may exist.

Attributes that are not identifiers by themselves, but can be
used for identification together with other attributes are called
quasi-identifiers [10]. For example, Daries et al. [5] studied
anonymization of MOOC data from a social science perspec-
tive, and defined the country, gender, age and level of educa-
tion of a participant as quasi-identifiers. Similarly, keystroke
timings found in programming snapshots are quasi-identifiers:
a single keystroke timing does not reveal the identity of the
typist, but together the timings can be used to construct a typ-
ing profile that can be used for identification [7, 11, 15, 21, 24].
Longi et al. [21] have showed that individual programmers can
be identified from source code snapshots based on the times
that the programmers take to move from one key to another,
i.e. the typing pattern.

From a computer science education viewpoint, having fine-
grained keystroke data provides a detailed picture of the stu-
dents’ learning process [30]. Research carried by Vihavainen
et al. [31] found that keystroke level data can be used to con-
duct studies that are not possible with more coarse-grained
data. Such data can also be used for inferring the programming
experience of students [20].

http://dx.doi.org/10.1145/3051457.3051458

However, it is rare to include keystroke data in open data sets.
While source code snapshot data is publicly available by, for
example, the Blackbox-project [3], the data does not include
keystroke level data. Thus, keystroke timing based studies
(e.g. [2, 7, 20, 29]) are presently hard to replicate because
such data is rarely collected and available. This has been
acknowledged as a problem and there seems to be pressure
(and a trend) for publishing more fine-grained learning data
than what is available today [14]. Al-Zubidy et al. note that
replication studies are essential for theory building and are
therefore concerned about the lack of replication studies in the
computer science education field [1].

Daries et al. [5] showed that in a social science context, the
value of data can degrade significantly in the anonymization
process – results on anonymized data differ from results on
non-anonymized data. In this work, we study whether there
is a similar effect in anonymizing source code snapshot data.
More specifically, we investigate whether keystroke timing
data in source code snapshots can be modified in a way that
prevents typing pattern based identification, whilst other valu-
able information can still be inferred from the anonymized
keystroke timing data. While identification could also be pos-
sible from other identifiers found in keystroke data such as
text content (variable names, class names, etc.), we focus on
preventing identification based on keystroke timings. Being
able to modify keystroke timings so that they cannot be used
for identification would remove a quasi-identifier from the
data, which would maintain the possibility that anonymized
keystroke timings could be included in open data sets and used
for research.

It has been previously shown that programming experience
can be inferred from keystroke timings to a degree [20]. Thus,
we conduct a case study where programming experience is
the valuable information we wish to be able to infer from
anonymized keystroke timing data. Inferring programming ex-
perience from keystroke timings can be useful on data sets that
do not include programming background information or with
students who have not answered a background survey [20].
We conduct experiments using two anonymization procedures
and compare identification accuracies with different degrees
of anonymization. Furthermore, we seek to find a balance
where programmers could not be identified based on keystroke
timings but programming experience could still be inferred.
Being able to infer programming experience but not the in-
dividuals would suggest that there is value for researchers in
the data, while the privacy of the individuals would be pre-
served. This is a step towards releasing fine-grained source
code snapshot data openly to others.

This article is organized as follows. First, we provide a sum-
mary of previous work related to identification using keystroke
dynamics, inferring valuable information from keystroke tim-
ings, and data anonymization. Next, we outline our research
methodology and data. Then, our experiments and their re-
sults are presented. Finally, a discussion of the results and
conclusions are presented.

RELATED WORK
Here, we visit three streams of related work. First, we discuss
articles where keystroke data has been used to infer the identity
of a user, then we discuss articles related to inferring other
information in addition to identity from keystroke timings,
and finally, we visit data anonymization from a data sharing
perspective.

Keystrokes and identity
Information recorded from typing, such as the duration of
keystrokes, pressure of keystrokes, and keystroke latencies,
has been used for identification purposes [7, 11, 15, 21, 22, 24].
From these especially the keystroke latencies between pairs of
keys – digraphs – have been used extensively [7,11,21,24]. For
example, a study by Longi et al. [21] shows that the identity
of programmers can be detected from keystroke data recorded
during programming sessions. Using data from two separate
courses, they observed that linking the students from one
course to another – when using full course data from both
courses – could be done with 98.6% accuracy. They note
that keystroke identification is an especially convenient way
of authentication in Massive Online Open Courses (MOOCs)
as it is irrespective of location and thus perfect for distance
learning. The MOOC platform Coursera is already using
keystroke identification as they collect typing samples from
students seeking to acquire a verified certificate for completing
a course [4].

Identification results often vary significantly based on the data
used. For example, in a study by Monrose and Rubin with 46
participants, the identification accuracy decreased significantly
from 79% with transcribed text to 21% with free text [24]. It
was suggested that this could be explained by the writer having
to think about what they were going to write instead of just
writing whatever was given to them. However, Killourhy and
Maxion found no significant difference in classification results
when using transcribed or free text [17].

Keystroke analysis has been applied successfully for identify-
ing students in online exams [19, 22, 27]. Using data from 30
students taking examinations in a business school, Monaco et
al. were able to correctly identify all the students [22]. Like-
wise, Leinonen et al. [19] were able to identify a large portion
of the students in programming exams where students code
on a computer. They showed that students can be identified
quite reliably in both controlled and uncontrolled exam en-
vironments. In the controlled exam, the students were in a
computer lab at the university and in the uncontrolled exam
they could be in whatever setting they found most comfortable,
e.g. at home.

Inferring information based on keystroke timing
In addition to identification and authentication, keystroke tim-
ings can be used for inferring other information. Thomas et al.
have studied the relationship between keystroke latencies and
programming performance [29]. They categorized digraphs,
i.e. character pairs, into seven categories based on their type
and calculated the mean latency by category. They found sta-
tistically significant correlations between the mean latencies
of some categories and exam results. An explanation they

provide is that skilled programmers type some digraphs faster
than novice programmers.

More recently, Leinonen et al. [20] partially replicated the
study by Thomas et al. [29] by analyzing the relationship be-
tween digraph latencies and programming performance. Fur-
thermore, they described an experiment where they sought
to identify students’ past programming experience from
keystroke latencies. Leinonen et al. note that inferring pro-
gramming experience from keystroke latency data can be more
reliable than a background questionnaire as some students may
choose not to answer such questionnaires. After performing
feature selection on digraph latencies and experimenting with
a set of classifiers, they observed up to 77% classification
accuracy and a Matthew’s Correlation Coefficient of 0.54 in
predicting whether a student had programmed previously or
not. As an example, they showed that on average, experi-
enced programmers move faster from the key i to the key +,
i.e. experienced programmers type the digraph i+, faster than
novice programmers and thus at least partially confirmed the
suggestion by Thomas et al. Intuitively, this makes sense as
the digraph i+ is something programmers type often when in-
crementing an index variable, while it rarely occurs in regular
text.

Additionally, keystroke analysis has been used to detect bore-
dom and engagement [2], stress [33], and emotional states [9].

Data anonymization
Anonymity in data is often achieved by removing attributes
from the data [10, 25, 28], reducing the accuracy of the data,
e.g. by grouping and smoothing [13, 16] and by adding noise
or fake information [8, 16]. Sun and Upadhyaya have devel-
oped a rule-based data sanitization method to remove sensitive
information such as social security numbers from keystroke
data [28].

Fung et al. outline four different types of attributes in data
which reserve privacy: explicit identifiers, quasi-identifiers,
sensitive attributes, and non-sensitive attributes [10]. Quasi-
identifiers are attributes that are not identifiers by themselves,
but can be used for identification together with other quasi-
identifiers. As an example of anonymizing data by removing
explicit identifiers and quasi-identifiers, network measurement
data could be anonymized by removing attributes such as
packet payloads and ip-addresses [25]. Daries et al. [5] ana-
lyzed the anonymization of data collected on MOOCs. They
found two explicit identifiers – username and ip-address – and
six quasi-identifiers – country, age, gender, and level of edu-
cation of a participant as well as course id and the amount of
forum posts – in their data and removed them. Similarly, ex-
plicit identifiers such as student numbers and quasi-identifiers
such as keystroke timestamp information could be removed
from source code snapshot data. However, removing quasi-
identifiers also reduces the value of the data as information
that is possibly relevant for research can be lost in the process
as Daries et al. noticed [5]. Thus, modifying such data in a
way that preserves privacy but yields possibility for research
would be optimal.

In addition to removing attributes, other approaches for pre-
serving anonymity have been suggested. For example, He et
al. [13] suggested anonymization of set-valued data by dis-
tributing the data into buckets. Their work was motivated by
the fact that the previously suggested approaches work well
only if a subject is associated with a single sensitive value
at a time, which does not suit set-valued data well. Simi-
larly, Samarati et al. suggested replacing values in the data by
semantically consistent less precise alternatives [26], i.e. gen-
eralization or rounding. A challenge here is to find an optimal
degree of anonymization where data is minimally distorted
while identification of subjects is still made improbable.

Recently, Monaco and Tappert developed two obfuscation
strategies in the context of a third party continuously recording
keystroke data [23]. They were able to decrease identification
accuracy on average by 20% by adding a 25 ms random delay
to the keystroke events and found that a delay of 500 ms was
needed to reduce identification accuracy by half. In the context
of a constant flow of keystrokes, there is a constraint that the
anonymization should not affect the user experience, e.g. an
added delay can not be noticeably long. However, in our
context of open data sets there is no such constraint, which
allows calculating optimal degrees of anonymization post hoc.

METHODOLOGY
In this section, we outline our research questions, the context
of the data we use, and our research methodology.

Research questions
In this work, we seek to determine how different degrees of
anonymization of programming course data affects attributes
that can be inferred from typing profiles. Our research ques-
tions are:

RQ 1. How does anonymization by rounding keystroke aver-
age latencies affect identification accuracy?

RQ 2. How does anonymization by bucketing affect identifi-
cation accuracy?

RQ 3. How does anonymization affect inferring program-
ming experience from typing profiles?

With the first research question, we seek to determine how
rounding average latencies can be used to anonymize key-
stroke data. With the second research question, we explore
whether splitting the data into even-sized buckets works for
anonymization. Finally, with the third research question, we
examine the extent of anonymization one can perform whilst
still retaining information about programming experience. We
are interested in finding an optimal amount of anonymization
where identification is no longer practical, but programming
experience can still be inferred.

Context
The data used in the experiments come from two similar in-
troductory Java programming courses held in the autumns of
2014 and 2015 at University of Helsinki. One of the authors
of this work was responsible for organizing the courses. Both
courses lasted for 7 weeks. The courses taught the students

programming basics such as variables, loops, input, and out-
put. Both data sets were used in the identification experiments,
but only the autumn 2014 course had information available
on students’ programming background, and therefore was the
only one included in the programming experience experiments.
41.2% of the students had at least some programming experi-
ence and 58.8% had none.

The students used an integrated development environment
(IDE) for working on the course assignments. The IDE used
the Test My Code -plugin [32] which records a snapshot for
each action where the student modifies the source code. The
snapshots have a nanosecond level timestamp in addition to
keystroke information. Students could turn the data gathering
mechanism in the environment off if they chose to – data for
this study was provided on a voluntary basis and no incentives
were given to students who provided the data.

Preprocessing
For preprocessing the keystroke data, we followed the proce-
dure outlined in the study by Longi et al. [21]. Only digraphs
with latencies between 10 ms and 750 ms were included as
first done by Dowland and Furnell [7]. The lower bound is
necessary to eliminate auto-completion events from the IDE.
The upper bound is needed to only capture the subconscious
typing rhythm of the student and to remove any breaks they
might take while working on an exercise.

Since the typing profiles are built with average latencies, we
required that a student should have at least 5 occurrences of
any digraph used to build their typing profile. If the student
had only typed a digraph under 5 times, the average latency
for that digraph was excluded from the student’s typing profile.
Snapshots where multiple characters were added at the same
time were discarded as they were almost exclusively copy-
paste events.

After preprocessing, there were 199 students left in the autumn
2014 data set and 153 in the autumn 2015 data set.

Identification
For the identification experiments, we use the acceptance
threshold method introduced by Longi et al. [21] where a
match in the top k closest training set samples is considered
correct for a specific test sample. The idea behind this is that
exact identification is not always mandatory. For example, for
authentication in online exams, it is sufficient to be quite sure
that the students are who they claim to be.

To build the typing profiles, the average latency between two
specific characters was calculated for all character pairs, i.e.
digraphs, for each student in the data. If a student had not typed
a digraph, the missing value was replaced with the student’s
average typing speed.

For both data sets used in the identification experiments, we
chose to build the typing profiles in the training set from the
first six weeks of exercises and used the data from exercises
of the last week as the test set. To determine if a test sample
was correctly identified, we calculated the euclidean distance
to each training set sample. We then sorted the training set
samples based on the distance from the test sample. We used

an acceptance threshold of k = 10, and thus regarded the stu-
dent to be correctly identified if their typing profile was in the
top 10 closest training set matches.

Programming experience inference
Earlier research indicates that the Bayesian Network and Ran-
dom Forest classifiers have good performance at classifying
students in the context of inferring programming experience
from typing profiles [20]. Therefore, we classify the students
into two groups: those with some programming experience
and those with none using the Bayesian Network, Random
Forest, and ZeroR classifiers. The ZeroR classifier is a ma-
jority class classifier which will classify every sample to the
majority class, and is therefore good as a baseline against
which the performance of the other two classifiers can be mea-
sured. The classification accuracy is evaluated using 10-fold
cross-validation.

Anonymization by rounding
We use an anonymization technique similar to generaliza-
tion [26] where the values in the data are rounded to reduce
identification accuracy (RQ1). To investigate how rounding
the average latencies in typing profiles affects programmer
identification and classification based on programming experi-
ence, we modified the latencies using Equation 1. It rounds
the latency z to the nearest x, where x is the number of mil-
liseconds given to the anonymization function as a parameter.
The resulting value y is then used instead of the original value
z in the construction of the typing profile. The aim is to reduce
the accuracy of the data, hopefully reducing identification
accuracy in the process, which would anonymize the data.
We studied how identification accuracy deteriorates when the
value of x is increased.

y = x∗ round(z/x) (1)

Equation 1 essentially distributes the average latencies into
buckets. For example, if x is 100 milliseconds, all latencies
will be rounded to the nearest multiple of 100. This leads
to all latencies between 0 and 50 ms being rounded to 0 and
distributed to the first bucket, all latencies between 50 and 150
ms being rounded to 100 and distributed to the second bucket,
and so on.

After rounding the average latencies, the data was normalized
to reduce the effect of digraphs with large average latencies
on the distance calculations.

Anonymization by distributing the data into even-sized
buckets
The buckets that result from the rounding method are not
equal in size: the size of the first bucket is half the size of the
subsequent buckets. Motivated by this we analyzed whether
distributing data into even-sized buckets could be used for
anonymizing keystroke data (RQ2). We modified the average
latencies in the data by first increasing each latency z by half of
the size b of the buckets using Equation 2, and then rounding
each latency z1 to the nearest x, where x is the current bucket
size b using Equation 3. The resulting value y is then used

instead of the original value z in the construction of the typing
profile.

z1 = z+(b/2) (2)

y = b∗ round(z1/b) (3)

The only difference between this method and the rounding
method is that this method distributes the data into even-sized
buckets. For example, if we have buckets of 100 milliseconds,
we want all latencies between 0 and 100 milliseconds to be in
the same bucket. Now, any latency between 0 and 100 ms will
first be incremented by 50 ms (half the bucket size), leading
to a distribution between 50 and 150 ms. Then, the latencies
will be rounded to the nearest multiple of 100 milliseconds
(the bucket size), which in the case of values between 50 and
150 milliseconds is 100 milliseconds. The procedure is then
repeated for all values between 100 and 200 milliseconds, etc.

Again, after rounding the average latencies, the data was nor-
malized to reduce the effect of digraphs with large average
latencies on the distance calculations.

Feature selection
For exploring how identification accuracy suffers when the
data is anonymized (RQ1 & RQ2), the 25 most common di-
graphs were used to construct the typing profiles as first done
by Leinonen et al. [19]

In the feature selection for the programming experience data
set (RQ3), we followed the procedure outlined by Leinonen
et al. [20] for inferring programming experience from typing
profiles. Features with no data (e.g. digraphs that no student
had typed) were removed. Then, the WEKA Data Mining
toolkit [12] was used for feature selection. Out of more than
10000 initial features, less than 50 features were left in each
data set after the feature selection.

EXPERIMENTS AND RESULTS
In this section, we describe the experiments we conducted to
answer each of the research questions and the results of the
experiments.

Identification experiments
To answer the first two research questions "How does
anonymization by rounding keystroke average latencies af-
fect identification accuracy?" and "How does anonymization
by bucketing affect identification accuracy?", we calculated
identification accuracies with different degrees of anonymiza-
tion.

The results of the experiments are presented in Table 1. The
millisecond values in the first column represent the rounding
for RQ1 and the bucket size for RQ2. The 0 ms row shows
the identification accuracy without modifications (rounding or
bucketing), i.e. without anonymization.

When using rounding for anonymization, identification accura-
cies in both data sets deteriorate in the first two 100 ms steps,

Table 1. Identification accuracy percentages with different rounding pre-
cisions and bucket sizes between 0 ms (no anonymization) and 600 ms.

Method Rounding Buckets

Data 2014 2015 2014 2015

0 ms 98.0 97.8 98.0 97.8
100 ms 81.7 81.3 26.1 31.7
200 ms 6.5 56.8 12.4 15.8
300 ms 72.5 67.6 6.5 7.2
400 ms 77.1 67.6 6.5 7.2
500 ms 6.5 7.2 6.5 7.2
600 ms 6.5 7.2 6.5 7.2

Table 2. Programming experience classification accuracy percentages
with different rounding precisions and bucket sizes.

Method Rounding

Classifier Bayes Net Random Forest ZeroR

0 ms 75.4 73.9 58.8
100 ms 73.9 75.4 58.8
200 ms 73.9 72.4 58.8
300 ms 73.9 70.9 58.8
400 ms 68.3 73.4 58.8
500 ms 73.9 73.9 58.8
600 ms 70.4 71.4 58.8

Method Buckets

Classifier Bayes Net Random Forest ZeroR

0 ms 75.4 73.9 58.8
100 ms 73.4 73.4 58.8
200 ms 71.4 75.4 58.8
300 ms 70.4 71.4 58.8
400 ms 61.3 69.8 58.8
500 ms 64.3 67.3 58.8
600 ms 58.8 60.3 58.8

but then improve or stay equal in the next two steps. After that
they start declining again. The unexpected value of 6.5% in
the rounding experiment of the 2014 data set when rounding
to 200 ms is studied in further detail later.

Using buckets for anonymization, identification accuracies in
both data sets deteriorate with every 100 ms step and reach
their lowest values already after three steps. These results
are different from the results of the rounding anonymization
method, where the lowest values were only attained after 5
steps and at the third step mark the identification accuracies
were still quite high at around 70% accuracy compared to
around 7% accuracy with the bucket approach.

Inferring programming experience from anonymized data
To answer the third research question, "How does anonymiza-
tion affect inferring programming experience from typing pro-
files?", we measured classification accuracies with different
amounts of anonymization using both the rounding method
and the bucket method and multiple classifiers.

Table 2 shows the classification accuracy results with different
amounts of anonymization. With the rounding method, classi-
fication accuracies deteriorate slightly with each step, although
there are exceptions. We do not observe a similar effect as

0 100 200 300 400 500 600

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

0
1

0
0

Bucket size in milliseconds

Id
e
n
ti
fi
c
a
ti
o
n
 a

n
d
 c

la
s
s
if
ic

a
ti
o
n
 a

c
c
u
ra

c
y
 p

e
rc

e
n
ta

g
e Identification

Bayes Net

Random Forest

ZeroR

Figure 1. Identification (solid line) and programming experience
(dashed lines) classification accuracy compared against increasing
bucket size. The data was split into even-sized buckets. Programming
experience classification accuracies are shown for three different classi-
fiers: Bayesian Network, Random Forest, and the majority class classi-
fier ZeroR. The x-axis represents bucket size and the y-axis expresses
identification and classification accuracy.

with identification, where the accuracy temporarily improved
when transitioning from rounding to nearest 200 milliseconds
to rounding to nearest 300 milliseconds. Overall, classification
accuracy declines more slowly than identification accuracy
with the rounding method. Similar to the rounding method,
classification accuracies with the bucket method degrade with
each step. A clear difference is that with the bucket method
the classification accuracies decline faster, nearing the perfor-
mance of the baseline ZeroR classifier when the bucket size
is 600 ms. In contrast, with the rounding method, Bayesian
Network and Random Forest outperform ZeroR by over 10
percentage points at the 600 millisecond mark. Nevertheless,
classification accuracy does not decline as fast as identification
accuracy with the bucket method – for example, with 300 mil-
lisecond buckets, reliable identification is no longer possible,
but classification accuracy is still significantly better than with
the majority class classifier. The decline in identification and
classification accuracy is shown in Figure 1.

DISCUSSION AND CONCLUSIONS
In this work, we studied how typing profile data could be ano-
nymized whilst retaining information important to researchers
in the data. The motivation for the study is to be able to
release open data sets where data that could be used to iden-
tify subjects is removed. We explored two different ways
of anonymizing data consisting of student typing profiles on
programming courses.

The results of our experiments indicate that it is possible to
anonymize keystroke data in a way that preserves information
relevant to researchers in our context. We showed that typing
profiles based on keystroke data can still be used to classify
programmers based on their programming experience, even
when the data has been sufficiently anonymized so that pro-
grammers cannot be identified with reliable accuracy based
on keystroke latencies.

For the rounding method, rounding keystroke average laten-
cies to the nearest 500 milliseconds would be optimal in our
context. When rounding to the nearest 500 milliseconds, reli-
able identification is hard. Approximately 7% of the students
are correctly identified with a threshold of k = 10. This ac-
curacy is very low when compared to the non-anonymized
accuracy of around 98.5%. Purely random guessing would
yield an identification accuracy of around 5% with our data
set, which means that even with the 7% accuracy it is possible
that there may still be some information on identity in the
data, which might not be acceptable in all scenarios. With the
same 500 millisecond rounding, programming experience can
be inferred accurately for 73.9% students. With the Random
Forest classifier, programming experience classification accu-
racy has remained the same as without anonymization, and
with the Bayesian Network classifier, it declined only by 1.5
percentage points.

For the bucket method, the optimal amount of anonymization
is quite different from the rounding method in our context.
With even-sized 300 millisecond buckets, identification accu-
racy has decreased to the lowest value it will reach. At that
point, programming experience classification is possible with
around 71% accuracy compared to the 58.8% accuracy with
the majority classifier. The result indicates that the bucket
method is more efficient at anonymizing the data, although
more domain-relevant information is lost in the process.

The results of the rounding method are interesting due to the
fact that only keystroke latencies between 10 and 750 millisec-
onds were included in the typing profiles. When rounding
to the nearest 500 milliseconds, there are only two possible
values for the features – 0 milliseconds or 500 milliseconds
– since all values between 0 and 250 milliseconds will be
rounded to 0 milliseconds while values between 250 millisec-
onds and 750 milliseconds (the upper bound) will be rounded
to 500 milliseconds. The result means that for inferring pro-
gramming experience from typing profiles, it is sufficient to
categorize all average latencies that the typing profiles include
into two buckets based on whether the student is fast or slow
at writing the digraph.

Another interesting find is that when the rounding method is
used, identification seems quite reliable with an accuracy of
around 74% even when rounding to the nearest 300 or 400
milliseconds. To further examine this, we plotted the changes
in identification accuracies in 10 millisecond intervals. The
resulting plot is in Figure 2. The local maxima for the two
courses are at 340 ms with 86.3% accuracy and 360 ms with
90.2% accuracy. When rounding to both 340 and 360 millisec-
onds, there are only three buckets in our data due to filtering
out events that are not between 10 and 750 ms. For exam-

0 100 200 300 400 500 600

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

0
1

0
0

Rounded to nearest x in milliseconds

Id
e
n
ti
fi
c
a
ti
o
n
 a

c
c
u
ra

c
y
 p

e
rc

e
n
ta

g
e

2014

2015

Figure 2. Identification accuracy compared against rounding precision.
All values in the data were rounded to a nearest millisecond value. The
larger the millisecond value in the x-axis, the lesser the rounding preci-
sion. The y-axis expresses identification accuracy.

ple, with 340 milliseconds, values between 0 and 170 ms are
rounded to 0 ms, values between 170 and 510 ms are rounded
to 340 ms, and values between 510 ms and 850 ms are rounded
to 680 ms. This result suggests that fine-grained timestamp
data is not actually necessary to identify programmers from
their typing patterns. Only categorizing average keystroke
latencies into three buckets – slow, mediocre, fast – might be
enough for reliable identification.

The effect seen in Figure 2 implies that categorizing data into
3 buckets works better for identification than categorizing data
into more buckets, unless the rounding starts to be insignificant
(under 100 milliseconds). A potential explanation is that addi-
tional buckets beyond three add unnecessary noise to the data.
For example, with five buckets – very slow, slow, mediocre,
fast, very fast – there might not be enough average latencies in
the very slow and very fast buckets. On the other hand, some
average latencies that should be categorized to the mediocre
bucket for maximal performance might be categorized to the
slow or fast buckets.

Moreover, the observed effect is a cautionary result for re-
searchers seeking to anonymize their data. Using a similar
method and observing e.g. that the identification accuracies
are low enough for sharing the data at the 200 millisecond
point, and adding an additional 100 milliseconds "just to be
sure", plenty of information that could be used to identify the
individuals in the data would be shared accidentally.

The results of our studies show that keystroke timings can be
anonymized in a way that retains informative value in data,
and thus keystroke timings can be included in open data sets

as long as proper anonymization procedures are followed. A
limitation of our study is that there were only 199 and 153
students in our data sets. This is due to a language constraint
as the courses were not organized in English. Future work
should examine how the methodologies outlined in this work
perform when in addition to large-scale data, the amount of
students is larger. In addition, further research is needed to
investigate whether other information than programming ex-
perience can be inferred from obscured data. Furthermore,
future work should investigate how removing possible hidden
identifiers other than keystroke latencies – such as text content
– affect both identification accuracy and inference of valuable
information.

ACKNOWLEDGMENTS
We are grateful to the anonymous reviewers whose comments
helped us improve the paper. This work was partially funded
by Academy of Finland under grant number 303694, Skills,
education and the future of work.

REFERENCES
1. Ahmed Al-Zubidy, Jeffrey C Carver, Sarah Heckman,

and Mark Sherriff. 2016. A (Updated) Review of
Empiricism at the SIGCSE Technical Symposium. In
Proceedings of the 47th ACM Technical Symposium on
Computing Science Education. ACM, 120–125.

2. Robert Bixler and Sidney D’Mello. 2013. Detecting
Boredom and Engagement During Writing with
Keystroke Analysis, Task Appraisals, and Stable Traits.
In Proc. of the 2013 International Conference on
Intelligent User Interfaces (IUI ’13). ACM, New York,
NY, USA, 225–234. DOI:
http://dx.doi.org/10.1145/2449396.2449426

3. Neil Christopher Charles Brown, Michael Kölling, Davin
McCall, and Ian Utting. 2014. Blackbox: a large scale
repository of novice programmers’ activity. In Proc. of
the 45th ACM technical symposium on Computer science
education. ACM, 223–228.

4. Coursera. 2016. Coursera Signature Track.
https://www.coursera.org/signature/. (2016). Accessed:
2016-10-24.

5. Jon P Daries, Justin Reich, Jim Waldo, Elise M Young,
Jonathan Whittinghill, Andrew Dean Ho, Daniel Thomas
Seaton, and Isaac Chuang. 2014. Privacy, anonymity, and
big data in the social sciences. Commun. ACM 57, 9
(2014), 56–63.

6. Dataverse. 2016. The Dataverse Project.
http://dataverse.org/. (2016). Accessed: 2016-10-24.

7. Paul S. Dowland and Steven M. Furnell. 2004. A
Long-Term Trial of Keystroke Profiling Using Digraph,
Trigraph and Keyword Latencies. In Security and
Protection in Information Processing Systems, Yves
Deswarte, Frédéric Cuppens, Sushil Jajodia, and Lingyu
Wang (Eds.). IFIP - The International Federation for
Information Processing, Vol. 147. Springer, 275–289.
DOI:http://dx.doi.org/10.1007/1-4020-8143-X_18

http://dx.doi.org/10.1145/2449396.2449426
https://www.coursera.org/signature/
http://dataverse.org/
http://dx.doi.org/10.1007/1-4020-8143-X_18

8. Cynthia Dwork. 2008. Differential privacy: A survey of
results. In Theory and applications of models of
computation. Springer, 1–19.

9. Clayton Epp, Michael Lippold, and Regan L. Mandryk.
2011. Identifying Emotional States Using Keystroke
Dynamics. In Proc. of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’11). ACM, New
York, NY, USA, 715–724. DOI:
http://dx.doi.org/10.1145/1978942.1979046

10. Benjamin C. M. Fung, Ke Wang, Rui Chen, and Philip S.
Yu. 2010. Privacy-preserving Data Publishing: A Survey
of Recent Developments. ACM Comput. Surv. 42, 4,
Article 14 (2010), 53 pages. DOI:
http://dx.doi.org/10.1145/1749603.1749605

11. R Stockton Gaines, William Lisowski, S James Press, and
Norman Shapiro. 1980. Authentication by keystroke
timing: Some preliminary results. Technical Report.

12. Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H Witten. 2009.
The WEKA data mining software: an update. ACM
SIGKDD explorations newsletter 11, 1 (2009), 10–18.

13. Yeye He and Jeffrey F Naughton. 2009. Anonymization
of set-valued data via top-down, local generalization.
Proc. of the VLDB Endowment 2, 1 (2009), 934–945.

14. Petri Ihantola, Arto Vihavainen, Alireza Ahadi, Matthew
Butler, Jürgen Börstler, Stephen H. Edwards, Essi
Isohanni, Ari Korhonen, Andrew Petersen, Kelly Rivers,
Miguel Ángel Rubio, Judy Sheard, Bronius Skupas,
Jaime Spacco, Claudia Szabo, and Daniel Toll. 2015.
Educational Data Mining and Learning Analytics in
Programming: Literature Review and Case Studies. In
Proc. of the 2015 ITiCSE on Working Group Reports
(ITICSE-WGR ’15). ACM, New York, NY, USA, 41–63.
DOI:http://dx.doi.org/10.1145/2858796.2858798

15. M. Karnan, M. Akila, and N. Krishnaraj. 2011. Biometric
personal authentication using keystroke dynamics: A
review. Applied Soft Computing 11, 2 (2011), 1565 –
1573. DOI:
http://dx.doi.org/10.1016/j.asoc.2010.08.003 The
Impact of Soft Computing for the Progress of Artificial
Intelligence.

16. Georgios Kellaris and Stavros Papadopoulos. 2013.
Practical differential privacy via grouping and smoothing.
In Proc. of the 39th international conference on Very
Large Data Bases (PVLDB’13). VLDB Endowment,
301–312.
http://dl.acm.org/citation.cfm?id=2488335.2488337

17. Kevin S. Killourhy and Roy A. Maxion. 2012. Free vs.
Transcribed Text for Keystroke-dynamics Evaluations. In
Proc. of the 2012 Workshop on Learning from
Authoritative Security Experiment Results (LASER ’12).
ACM, New York, NY, USA, 1–8. DOI:
http://dx.doi.org/10.1145/2379616.2379617

18. Kenneth R Koedinger, Ryan SJd Baker, Kyle
Cunningham, Alida Skogsholm, Brett Leber, and John
Stamper. 2010. A data repository for the EDM
community: The PSLC DataShop. Handbook of
educational data mining 43 (2010).

19. Juho Leinonen, Krista Longi, Arto Klami, Alireza Ahadi,
and Arto Vihavainen. 2016a. Typing Patterns and
Authentication in Practical Programming Exams. In Proc.
of the 2016 ACM Conference on Innovation and
Technology in Computer Science Education. ACM,
160–165.

20. Juho Leinonen, Krista Longi, Arto Klami, and Arto
Vihavainen. 2016b. Automatic Inference of Programming
Performance and Experience from Typing Patterns. In
Proc. of the 47th ACM Technical Symposium on
Computing Science Education (SIGCSE ’16). ACM, New
York, NY, USA, 132–137. DOI:
http://dx.doi.org/10.1145/2839509.2844612

21. Krista Longi, Juho Leinonen, Henrik Nygren, Joni Salmi,
Arto Klami, and Arto Vihavainen. 2015. Identification of
Programmers from Typing Patterns. In Proc. of the 15th
Koli Calling Conference on Computing Education
Research. ACM, 60–67.

22. J.V. Monaco, J.C. Stewart, Sung-Hyuk Cha, and C.C.
Tappert. 2013. Behavioral biometric verification of
student identity in online course assessment and
authentication of authors in literary works. In Biometrics:
Theory, Applications and Systems (BTAS), 2013 IEEE
Sixth International Conference on. 1–8. DOI:
http://dx.doi.org/10.1109/BTAS.2013.6712743

23. John V Monaco and Charles C Tappert. 2016.
Obfuscating Keystroke Time Intervals to Avoid
Identification and Impersonation. In The 9th IAPR
International Conference on Biometrics (ICB). IEEE.

24. Fabian Monrose and Aviel Rubin. 1997. Authentication
via Keystroke Dynamics. In Proc. of the 4th ACM
Conference on Computer and Communications Security
(CCS ’97). ACM, New York, NY, USA, 48–56. DOI:
http://dx.doi.org/10.1145/266420.266434

25. Ruoming Pang, Mark Allman, Vern Paxson, and Jason
Lee. 2006. The Devil and Packet Trace Anonymization.
SIGCOMM Comput. Commun. Rev. 36, 1 (Jan. 2006),
29–38. DOI:http://dx.doi.org/10.1145/1111322.1111330

26. Pierangela Samarati and Latanya Sweeney. 1998.
Generalizing Data to Provide Anonymity when
Disclosing Information (Abstract). In Proc. of the
Seventeenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS
’98). ACM, New York, NY, USA, 188–. DOI:
http://dx.doi.org/10.1145/275487.275508

27. J.C. Stewart, J.V. Monaco, Sung-Hyuk Cha, and C.C.
Tappert. 2011. An investigation of keystroke and
stylometry traits for authenticating online test takers. In
Biometrics (IJCB), 2011 Int. Joint Conference on. 1–7.
DOI:http://dx.doi.org/10.1109/IJCB.2011.6117480

http://dx.doi.org/10.1145/1978942.1979046
http://dx.doi.org/10.1145/1749603.1749605
http://dx.doi.org/10.1145/2858796.2858798
http://dx.doi.org/10.1016/j.asoc.2010.08.003
http://dl.acm.org/citation.cfm?id=2488335.2488337
http://dx.doi.org/10.1145/2379616.2379617
http://dx.doi.org/10.1145/2839509.2844612
http://dx.doi.org/10.1109/BTAS.2013.6712743
http://dx.doi.org/10.1145/266420.266434
http://dx.doi.org/10.1145/1111322.1111330
http://dx.doi.org/10.1145/275487.275508
http://dx.doi.org/10.1109/IJCB.2011.6117480

28. Yan Sun and Shambhu Upadhyaya. 2015. Secure and
privacy preserving data processing support for active
authentication. Information Systems Frontiers 17, 5
(2015), 1007–1015. DOI:
http://dx.doi.org/10.1007/s10796-015-9587-9

29. Richard C Thomas, Amela Karahasanovic, and Gregor E
Kennedy. 2005. An investigation into keystroke latency
metrics as an indicator of programming performance. In
Proceedings of the 7th Australasian conference on
Computing education-Volume 42. Australian Computer
Society, Inc., 127–134.

30. Arto Vihavainen, Juha Helminen, and Petri Ihantola.
2014a. How novices tackle their first lines of code in an
IDE: analysis of programming session traces. In Proc. of
the 14th Koli Calling International Conference on
Computing Education Research. ACM, 109–116.

31. Arto Vihavainen, Matti Luukkainen, and Petri Ihantola.
2014b. Analysis of Source Code Snapshot Granularity
Levels. In Proc. of the 15th Annual Conference on
Information Technology Education (SIGITE ’14). ACM,
New York, NY, USA, 21–26. DOI:
http://dx.doi.org/10.1145/2656450.2656473

32. Arto Vihavainen, Thomas Vikberg, Matti Luukkainen,
and Martin Pärtel. 2013. Scaffolding students’ learning
using Test My Code. In Proc. of the 18th ACM
conference on Innovation and technology in computer
science education. ACM, 117–122.

33. Lisa M. Vizer, Lina Zhou, and Andrew Sears. 2009.
Automated Stress Detection Using Keystroke and
Linguistic Features: An Exploratory Study. Int. J.
Hum.-Comput. Stud. 67, 10 (Oct. 2009), 870–886. DOI:
http://dx.doi.org/10.1016/j.ijhcs.2009.07.005

http://dx.doi.org/10.1007/s10796-015-9587-9
http://dx.doi.org/10.1145/2656450.2656473
http://dx.doi.org/10.1016/j.ijhcs.2009.07.005

	Introduction
	Related work
	Keystrokes and identity
	Inferring information based on keystroke timing
	Data anonymization

	Methodology
	Research questions
	Context
	Preprocessing
	Identification
	Programming experience inference
	Anonymization by rounding
	Anonymization by distributing the data into even-sized buckets
	Feature selection

	Experiments and Results
	Identification experiments
	Inferring programming experience from anonymized data

	Discussion and Conclusions
	Acknowledgments
	References

