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1 Introduction

Nowadays, a lot of data is shared openly for replication studies and novel
analysis on existing data [11,18,39]. Still, privacy issues often prevent
companies, governments, and (educational) institutions from sharing the
data that they have collected [23]. For example, on many computer sci-
ence courses, very fine-grained data from the students’ working process is
collected in the form of source code snapshots. Such snapshots have been
used for studying varying topics such as detecting struggling students [1],
inferring programming experience [42], and studying pausing behavior [43].
Replicating keystroke latency -based studies is currently hard as sharing non-
anonymized data that could be used to identify individuals would violate
the privacy of the users or parties from which the data has been collected.
Anonymizing data by simply removing parts of the data — attributes — may
not be sufficient as hidden factors that can be used to identify individuals
may exist.

For example, the online movie streaming platform Netflix held an open
competition to improve the accuracy of their recommendations to users. To
help competitors develop their algorithms, Netflix released an anonymized
data set containing movie ratings given by users. Narayanan and Shmatikov
were, however, able to link the data to another data set collected from
the online movie database Internet Movie Database and identify individual
users from the data [55]. Based on the supposedly anonymous ratings that
individuals had given, information such as political beliefs could, in the end,
also be inferred.

Attributes that are not identifiers by themselves, but can be used for
identification together with other attributes are called quasi-identifiers [23].
For example, Daries et al. [17] studied anonymization of MOOC data from a
social science perspective, and defined the country, gender, age and level of
education of a participant as quasi-identifiers. Similarly, keystroke timings
found in programming snapshots are quasi-identifiers: a single keystroke
timing does not reveal the identity of the typist, but together the timings can
be used to construct a typing profile that can be used for identification [20,
24,36,47,52]. For example, Longi et al. [47] have showed that individual
programmers can be identified from source code snapshots based on the
times that the programmers take to move from one key to another, i.e. the
typing pattern.

It is rare to include keystroke data in open data sets. While source
code snapshot data is publicly available by, for example, the Blackbox-
project [11], the data does not include keystroke level data. Thus, keystroke
timing -based studies (e.g. [9, 20, 42, 68]) are presently hard to replicate
because such data is rarely collected and available. This has been acknowl-
edged as a problem and there seems to be pressure (and a trend) for pub-
lishing more fine-grained learning data than what is available today [33].



Al-Zubidy et al. note that replication studies are essential for theory build-
ing and are therefore concerned about the lack of replication studies in the
computer science education field [3].

Leinonen et al. [42] have shown that programming experience can be
inferred from keystroke timings to a degree. They classified students into
experienced and novice programmers with different machine learning meth-
ods and were able to achieve classification accuracies of up to 77%, which
were significantly higher than classification accuracy with the majority clas-
sifier which had an accuracy of 58.8%. This indicates that typing profiles
contain information on programming experience, and indeed, Leinonen et
al. noticed that the features — average latencies between character pairs
— with the most predictive power were related to programming and that
the results were likely explained by experienced programmers being able to
type programming related keywords and symbols more quickly than novice
programmers.

Daries et al. [17] showed that in a social science context, the value of
data can degrade significantly in the anonymization process — results on
anonymized data differ from results on non-anonymized data. In this work,
we study whether there is a similar effect in anonymizing source code snap-
shot data. More specifically, we investigate whether keystroke timing data
in source code snapshots can be modified in a way that prevents typing
pattern -based identification, whilst other valuable information can still be
inferred from the anonymized keystroke timing data. We conduct a case
study where programming experience is the valuable information we wish
to be able to infer from anonymized keystroke timing data.

The novel contributions of this work are as follows. We conduct ex-
periments using two anonymization procedures and compare identification
accuracies with different degrees of anonymization. Furthermore, we seek to
find a balance where programmers could not be identified based on keystroke
timings but programming experience could still be inferred. Being able to
infer programming experience but not the individuals would suggest that
there is value for researchers in the data, while the privacy of the individu-
als would be preserved. This is a step towards releasing fine-grained source
code snapshot data openly to others.

We focus on preventing identification based on keystroke timings, which
does not guarantee that data is anonymous since identification could also
be possible from other identifiers found in keystroke data such as text con-
tent (variable names, class names, etc.). However, being able to modify
keystroke timings so that they can not be used for identification would re-
move a quasi-identifier from the data, which would maintain the possibility
that anonymized keystroke timings could be included in open data sets and
used for research.

This work is organized as follows. First, in Section 2, background on
source code snapshot analysis, keystroke identification, inference based on



keystroke timings, and data anonymization techniques are presented. Sec-
ond, in Section 3, the research design of this work is outlined, including the
research questions and the context of the data that is used in the study.
Then, in Section 4, we detail our research methodology, followed by the
experiments we conduct to answer our research questions and the results
of the experiments in Section 5. In Section 6, the results of this work and
their consequences are discussed. Finally, Section 7 concludes this work and
presents future avenues of research.

This thesis builds on previously published research of the author and
his colleagues [41,42,47]. Text that has been written by the author for the
original articles is used in some parts of this work, mainly in the background,
research design, and methodology sections (Sections 2, 3, and 4).



2 Background

Here, we visit four streams of related work. First, background on source
code snapshot analysis is covered, followed by discussion on articles where
keystroke timings have been used for inferring the identity of a user. Then,
we review articles related to inferring other information in addition to iden-
tity from keystroke timings, and finally, we visit data anonymization focusing
on different anonymization techniques.

2.1 Source Code Snapshot Analysis

Recording data of students learning processes is increasingly popular. On
many introductory programming courses, such as those provided at the Uni-
versity of Helsinki, the students’ complete working process is recorded. For
example, most of the students in the "Introduction to Programming" and
"Advanced Course in Programming" use a plugin called TestMyCode [71]
that records snapshots of the students’ progress on assignments. The data
is very fine-grained as it includes every keystroke the students type in the
programming environment. In addition to snapshots, usage data is being
collected from other learning sources such as online course materials.

A recent literature review that analyzed data collection in the context
of computing education found that only 76 out of over 3500 articles in-
cluded automatic programming process data gathering [33]. The Blackbox-
project [11] provides researchers access to source code snapshot data col-
lected from the BlueJ development environment. However, the data does
not contain keystroke level data and thus can not be used for replicating
keystroke level studies. Replication and validation studies would be essen-
tial for confirming studies can generalize from one context to another, and
that context specific factors are not the only contributing factors to phe-
nomena observed in source code snapshot -based studies.

When source code snapshots are used for research, they are often prepro-
cessed, e.g. converted or aggregated to a more abstract or coarse level [31].
This is one of the main benefits of having very fine-grained data as in con-
trast, more coarse-grained data can not be converted to fine-grained data.
For example, if source code snapshots are only collected when students run
their code, data in between running the code is lost. In this case, keystroke
level studies could not be conducted with the data as it is unlikely the stu-
dents run their code after typing every keystroke, and keystroke information
could not be derived post hoc.

For example, Rivers and Koedinger have developed a programming tutor
that automatically generates hints based on states which are built based on
programming code [61,62]. In this case, they first convert the code into states
that are irrespective of differences in code syntax. For example, the variable
and class names in the code are renamed deterministically so that the state



of the code is the same regardless of how students name the variables or
classes. Then, the transitions between these states are used to see whether
the student is moving towards or away from the states that represent the
possible correct solutions to the problem. The states and transitions built
based on source code snapshots can be seen as the programming paths the
students take while completing exercises. Other research has studied pro-
gramming paths to analyze the students’ working process: Hosseini et al.
found that students build their programs incrementally in small steps [30].

Leppénen et al. [43,44] have also studied students’ working processes
from source code snapshot data. They analyzed the working process of stu-
dents focusing especially on the pauses the students take and how students
space out their work, i.e. how many days do they work on the course as-
signments. They found that students work on average three days a week on
the exercises. Those who got more points in the exam worked on less days
on average, which was quite surprising considering that it has been previ-
ously shown that spacing out work can be beneficial for learning, at least
in the context of recalling information [12,13,19]. In addition to studying
spacing out work, they studied what kind of pauses students take during
exercises and how those spaces correlate with the exam points. The found
that students who take a lot of short pauses that last from ten seconds to
four minutes perform worse in the exam. They hypothesize that this is due
to either students multitasking when they are completing the exercises, re-
sulting in a lot of task switching, which has been shown to be detrimental
for learning [54]. Another hypothesis they postulate is simply that lower
performing students have to go back to the material more to refresh unclear
concepts. Leppénen et al. [43,44] used snapshots from two different intro-
ductory programming courses held at the University of Helsinki — one of the
data sets was the same one that is used in the experiments in this work.
This is a good example of the versatility of source code snapshots: there
are a multitude of research avenues that can use source code snapshots for
studies.

Another avenue of research that has utilized source code snapshots is pre-
dicting students programming performance [69,74] and automatically iden-
tifying struggling students [2]. The Error Quotient (EQ) -algorithm [34, 63]
is developed for predicting students’ success based on source code snapshots.
It analyzes whether successive source code snapshots compile, basing its pre-
dictions on the relative amount of compiling and non-compiling snapshots.
Watson et al. [74] developed an algorithm called Watwin that can be used
to predict students’ success based on source code snapshots. They devel-
oped their algorithm as the EQ-algorithm by Jadud et al. [34] is not optimal
in all contexts [59], for example when the students are using an integrated
development environment where non-compiling code is visualized and eas-
ily corrected by the students. The Watwin-algorithm is based on the time
it takes for a student to resolve problems compared to other students who



have completed the problem. Ahadi et al. [2] studied both the EQ [34] and
Watwin [74] -algorithms — in addition to other machine learning methods
— for identifying struggling students, but found that both EQ and Watwin
performed poorly with their data. However, machine learning methods such
as the Random Forest classifier were able to achieve better results. They
speculate that EQ’s and Watwin’s poor performance was due to the fact
that Ahadi et al’s study had less data than other studies where EQ and
Watwin have performed better.

2.2 Keystroke Latencies and Identity

In this subsection, we review previous studies on authentication and iden-
tification in the context of keystroke latencies, how the environment of the
typist can affect identification accuracy, and lastly look at few studies on
identification in online exams, and identification based on source code snap-
shots in greater detail.

2.2.1 Authentication and Identification

Information recorded from typing, such as the duration of keystrokes, pres-
sure of keystrokes, and keystroke latencies, has been used for identification
purposes [20,24,36,47,51,52,58]. Being able identify people based solely on
their typing patterns can be useful for both companies and consumers using
online services. Typing patterns can, for example, be used as an additional
layer of security in addition to the traditional username and password com-
bination in sensitive applications. This way, only knowing the password is
not enough for an impostor to gain access to the service. Similarly, typ-
ing patterns can be used for plagiarism detection in online exams [41, 48].
Typing patterns are a biometric trait and as such can be used for similar
purposes as other biometric traits such as the iris. The advantage over other
biometric traits is that a typing pattern can be observed without special-
ized hardware, a simple keyboards suffices. In contrast, using the iris or
fingerprints requires a specialized scanner.

Intuitively, it is understandable that typing patterns can be used for
identification. For example, a programmer who uses the computer daily
for hours will likely be a faster typist compared to someone who seldom
uses the computer. However, simply comparing typing speeds in general
has not yielded very accurate results (e.g. in [47]). Thus, more detailed
typing profiles are often used. These more detailed profiles can include,
for example, average latency of the typist before a specific letter on the
keyboard. Even more detailed profiles might take into account latencies
between any two specific characters or digraphs. Similarly, the latencies
between three specific keys, trigraphs, could be used. For example, in the
word true, there are three digraphs — ¢r, ru, and ue — and two trigraphs —



tru and rue. Sometimes, even longer character sequences are included. For
example, Dowland and Furnell [20] included the most common 200 English
words in their analysis. In their research, the best results were achieved
with digraphs. Indeed, digraphs have been used extensively [20,24,47,52].
In addition to latencies between keys, for example the time a key is held
down can be considered in typing profiles. Killourhy and Maxion noticed
that including hold timings in typing profiles improved the identification
results [38].

2.2.2 Effect of Environment on Identification Accuracy

A factor that can affect identification results significantly is the environ-
ment of the typist and what they are writing. A lot of research has gone
into studying how identification accuracies vary between users typing a tran-
scribed text such as their password or other predetermined text and users
typing freely whatever they come up with. Of these, transcribed text has
been studied more [7,15,27,35,76], most likely due to the traditional authen-
tication aspect of keystroke analysis. More recently, the focus has shifted
to free text [7,25,47,50]. The results have varied in the studies where the
difference between free and transcribed texts have been examined explicitly.
In a study conducted by Monrose and Rubin [52], identification results were
significantly better when using transcribed text compared to free text with
accuracies of 79% and 21% respectively. Their hypothesis for the significant
difference is that with transcribed text, the typist does not need to stop and
think about what they are going to write, but can just type whatever text
they are supposed to write.

However, other studies have found free text to perform as well as tran-
scribed text, or at least close to it. Killourhy and Maxion [38] conducted
a study where twenty subjects had to write both free and transcribed text.
Using lowercase digraph latencies and key hold timings, they found that
results varied and neither transcribed nor free text could outperform the
other in all cases. Similarly, Villani et al. [72] found that with 36 subjects,
identification accuracies with transcribed text were only marginally better
with transcribed text compared to free text.

Gunetti and Picardi [25] note that different keyboards could possibly af-
fect keystroke identification accuracy. Villani et al. [72] studied the effect of
the keyboard on identification accuracy. They compared laptop and desk-
top keyboards and found that if the subjects changed keyboards between the
training and testing of the identification model, the results were significantly
lower (around 60% accuracy) compared to when they used the same key-
board for both training and testing (around 98% accuracy). There were no
noticeable differences between using only laptop or only desktop keyboards.
However, when the data was mixed, i.e. both laptop and desktop keyboards
were used in both training and testing, identification was possible with the



same high accuracy of around 99%.

2.2.3 Identification in Online Exams

In traditional programming courses, students have usually been at least
partly graded using pen and paper exams. One of the problems related to
such exams is that they only partially connect to the practice conducted
within such courses. Testing students in a more practical environment has
been constrained due to the limited resources that are needed, for example,
for authentication.

Previous work by Bennedsen and Caspersen [5] argues strongly for hav-
ing machine examination on introductory programming courses. However,
a big limitation for having machine examinations is the cost of overseeing
students taking the exam. Leinonen et al. [41] have shown that it is possible
to identify students in a machine examination based on their typing profiles,
which means that the cost of machine examinations could be alleviated by
having the students complete the exam remotely on their own devices, since
cheating students could be identified based on their typing patterns. How-
ever, condemning a student for cheating solely based on their typing profile
is not advisable, since there could be other factors that affect typing such
as exam stress or a broken arm. Nevertheless, what could be done is that a
flag could be raised in situations where the student is suspected of cheating
based on their typing, and further analysis is performed manually. A lim-
itation of their approach is that keystroke analysis can only identify cases
where a student has someone else complete the exam for them, but not cases
where the whole course is taken by someone else than the student. Since it
is only possible to observe typing, a student could cheat by having a friend
help them during the exam, but do all the typing themselves. However,
at the same time, such behavior might likely also influence the typing pat-
terns, which would be noticeable when typing profiles in the exercises and
the exam are analyzed in the same way as changing from transcribed to
free-text does [52].

Keystroke analysis has been applied successfully for identifying students
in online exams [41,51,65]. Using data from 30 students taking examina-
tions in a business school, Monaco et al. were able to correctly identify
all the students [51]. Likewise, Leinonen et al. [41] were able to identify a
large portion of the students in programming exams where students code
on a computer. They showed that students can be identified quite reliably
in both controlled and uncontrolled exam environments. In the controlled
exam, the students were in a computer lab at the university and in the
uncontrolled exam they could be in whatever setting they found most com-
fortable, e.g. at home. However, they note that the identification accuracy
is significantly lower than the accuracy achieved when students are identi-
fied on the last week of the course using the first six weeks as training data.



They found that using data from an exam does not perform as well as using
a data set consisting of one week’s worth of programming especially when
identification is required to be exact. When the student is only required
to be close enough, for example within the ten closest training set samples,
identification accuracies of over 95% were observed.

2.2.4 Identification from Source Code Snapshots

A study by Longi et al. [47] shows that the identity of programmers can be
detected from keystroke data recorded during programming sessions. They
used data from two programming courses held at the University of Helsinki
in the fall of 2014. One of the courses is the same as the course from which
data is used in the experiments in this work. They studied how the amount
of data affects identification accuracy with two experiments. In the first
experiment, they increased the size of the training set week at a time and
compared identification accuracies of successive experiments. They found
that while exact identification accuracy rose from around 78% to over 95%
when the size of the training set was increased from a single week to include
six weeks of data, they were able to achieve an identification accuracy of
over 95% when the student was allowed to be within the five closest training
set samples to be considered correctly identified already when using only a
single week as the training set. This means that already with a single week
sized training set, possible impostors or cheaters can be identified quite well.

In addition to studying identification within a single course, Longi et
al. [47] studied identification from one course to another. Being able to iden-
tify students across courses would indicate that releasing keystroke latency
data poses privacy issues. For example, if a data set with typing informa-
tion is released, it could be connected to a data set with typing information
from another context. They found that students could be identified with
extremely good accuracy when all data from the courses was used — only 2
out of the 145 students were not correctly identified, i.e. the identification
accuracy was 98.6%. The identification in this case was exact, i.e. a cor-
rectly identified student had to be the closest match from the training set
to be considered correctly identified. When this condition was relaxed from
exact identification to allow the student to be within the closest five or ten
typing samples in the training set, only a single student was not identified
correctly. Longi et al. note that keystroke latency -based identification and
authentication are especially convenient for long-distance courses such as
Massive Online Open Courses (MOOCs) as they are irrespective of location
and thus perfect for distance learning. The MOOC platform Coursera is
already using keystroke identification as they collect typing samples from
students seeking to acquire a verified certificate for completing a course [16].

One of the main ideas of Longi et al’s identification model [47] is that
exact identification is not always required. For example, in online exams it



might be enough to only catch people whose typing profile is suspiciously
different in the exam compared to the exercises as that might be a sign that
someone else is completing the exam for them. Oppositely, exact identifica-
tion is obviously required with authentication as there could be classified or
personal information available in the system that requires authentication.
Possibly due to this, the majority of previous work [6,7,15,24,35,48,50,53,53]
on keystroke latency -based identification have focused on exact identifica-
tion. Longi et al’s model is inspired by the k-Nearest-Neighbors (kNN)
classification algorithm. In kNN, a new sample is classified based on the
classes of it’s "neighbors'. The neighbors are determined based on some
distance function. A commonly used distance function is the euclidean dis-
tance, which is the one that Longi et al. used. Now, instead of trying to
predict a sample’s class, what is being predicted is the identity of the sam-
ple. Looking at the majority identity would not make sense as the samples
are from different students, but instead in Longi et al’s model the student
is defined to be correctly identified if their sample is within the nearest k
samples. Longi et al. call k& the acceptance threshold as the value defines
how many closest samples are accepted as correct. For example, with an
acceptance threshold of five, a student is deemed to be correctly identified
if any of the five closest training set samples comes from the student. So,
in an exam scenario, we could build a typing profile based on the course
assignments for each student and then build similar typing profiles in the
exam. Next, we could calculate the distance from the students’ assignment
typing profiles to the students’ exam typing profiles and check for each of the
exam typing profiles whether the k closest typing profiles from the exercises
include the student’s exercise typing sample.

Longi et al’s model was examined in more detail by Leinonen et al. [41]
who found that an acceptance threshold of 5 seems to have about as good
performance as a threshold of 10, and both perform significantly better than
exact identification, i.e. using a threshold of one. There are a few exceptions
though, which suggests that to be certain, a threshold of 10 should be used.
With only 25 features and a threshold of 10, they were able to get over
95% identification accuracy with all data sets in their experiments. This
means that in a real-world scenario, only 5% of the cases would be false
positives, i.e. identifying a "cheating" student where there is no cheating.
The acceptance threshold is still small enough to guarantee reasonably low
false negative rate; for all contexts the probability of an impostor passing
the identification test is below 10%.

2.3 Classification methods

In this subsection, we outline the classification methods that are used later
in the experiments in this work. We will not cover these in great detail, but
rather try to convey intuitive understanding behind the classifiers.

10
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Figure 1: An example of a possible Bayes Net. Here A, B, X, and PE are
states, and the edges represent dependencies. For example, PE is dependent
on all A, B, and X. It could be dependent on other states as well, represented
by the three dots.

2.3.1 Bayes Net

The Bayesian Network [4] (hereinafter shortened to Bayes Net) classifier is
a probabilistic graphical model, which means that it can express random
variables and their dependencies as a graph. An advantage of this is that
the resulting graph is easily human-readable and can provide researchers
knowledge on the underlying state of the system based on observed data. A
Bayes Net contains states, transitions between the states, and conditional
probabilities between the states. Figure 1 depicts an example of a Bayes
Net graph.

The transitions between states in a Bayes Net are directed and cannot
form cycles, i.e. a Bayes Net is a directed acyclic graph (DAG). The edges,
i.e. transitions, express the dependencies between variables. For example,
if there is an edge from a state A representing some random variable A’ to
a state B representing some other random variable B’, then the value of B’
depends on the value of A’. The values are truth values, i.e. either true or
false.

Bayes Nets can be used for inferring the states of unobserved variables.
The classifier can learn states, transitions, and conditional probabilities
based on training data, and then use the learned information for inferring
the value of a state based on incomplete new data. Here, incomplete means
that there are states for which the value is not known in the new data.

11



For example, let’s consider inferring the programming experience of a
student. We can give Bayes Net information on students’ programming
background and their average typing latencies for selected character pairs,
i.e. digraphs. Then, the classifier can learn, for example, that based on this
data, it seems that the programming experience variable is dependent on the
typing latencies. It could learn that students with previous programming
experience type certain digraphs faster. After learning the dependencies
between the latencies and programming experience, it could automatically
infer the value of the programming experience random variable based on
typing latencies. This would be useful when the real value for the variable
is unknown. For example, we could teach the Bayes Net with values from
a course where programming experience of the students is known based on
a background survey, and infer the programming experience of students on
another course where such information is not available. For example, in
Figure 1, the state PE could be the programming experience of a student.
If we do not know its true value, we could infer it based on the values of
the states from which there is an edge to PE. The other states could be for
example "average latency of the digraph i+ is lower than 300 milliseconds".

2.3.2 Random Forest

Random forest classification [10] is based on decision trees. Decision trees
are built based on data and can be used to predict the value of a random
variable based on values of input variables. Decision trees contain rules
which are used in predictions. Similar to Bayes Nets, decision trees can be
represented by graphs and are quite easy for a human to understand. In a
decision tree, the leafs of the tree depict the possible classes the predicted
variable can be assigned to. To predict the value of a variable, a path is
followed from the root of the tree until a leaf node is reached. The nodes
in between the root and the leafs represent decisions and the next node is
selected based on the values of the input variables.

Random forests are an extension of decision trees. In random forests,
multiple decision trees are used instead of a single decision tree. This is done
to decrease the chance of overfitting the training data, i.e. making predic-
tions that are only good with the training data but which do not generalize
to new data. The random forest will make the prediction that the majority
of the decision trees that it contains make. For example, in classifying stu-
dents’ programming experience, if the random forest contains 200 decision
trees, and 125 of them predict that the student has programming experi-
ence and 75 predict he does not, the random forest will make the majority
prediction and predict that the student does have programming experience.

Random forests are optimized by using only a subset of the features
in each tree [10]. This is done because ideally, the decision trees within
a random forest do not correlate with one another. If they do correlate,
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then the more they correlate, the closer the prediction is to just a single
decision tree making the prediction. For example, if there are multiple input
variables that correlate a lot with the value that is being predicted, many
of the decision trees might learn rules based on those strong predictors.

2.3.3 Majority Classifier

Compared to the previously covered Bayes Net and Random Forest clas-
sifiers, the majority classifier is very simple: it always categorizes a new
sample to the class with the most observations in the training data. For
example, if there are three classes A, B, and C, and there were 50, 25, and
25 observations for each class respectively in the training data, it would cat-
egorize each new sample to the A class, since most of the training data was
from that class.

The usefulness of the majority classifier comes from using it as a baseline
against which other classifiers can be evaluated. For example, let’s consider
inferring programming experience in a scenario where 75% of the students
did not have programming experience and 25% of the students had some
programming experience in the training data. Now, the majority classifier
would always predict students to not have programming experience, since
that was the majority class in the training data. If we observe new data with
a similar distribution, i.e. again 75% of the students do not have program-
ming experience and 25% have some, the majority classifier would achieve
75% classification accuracy. Obviously, when we use more sophisticated
classifiers such as either Bayes Net or Random Forest, we would expect to
achieve a higher than 75% classification accuracy in this scenario. Thus,
the majority classifier is a good baseline classifier in scenarios where the
expected size of the classes is not equal (e.g. our example where the other
class was three times as big as the other). In this kind of scenarios, other
classifiers should ideally achieve better classification accuracies compared to
the majority classifier, and are not very good at inference even if the achieve
seemingly good results, if those results are worse than the results of the
majority classifier.

2.3.4 Assessing the Classifiers with Cross-validation

There are many ways of evaluating classifiers. For example, if there is enough
data, some data can be left out of the training set and used as a test set
later to assess the accuracy of the classifier. However, if the data set is not
very large, leaving out data during training might not be optimal.
Cross-validation is a method of assessing classifiers that is most suitable
for scenarios where there is not much data. In cross-validation, one data
set is split into subsets that are iteratively used as either the training or
the test sets. For example, in 10-fold cross-validation that is used later in
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the programming experience inference experiments in this work, the data is
split into ten equal-sized subsets. Then, accuracy of the classifier is observed
ten times, training the classifier with nine out of the ten subsets and using
a single subset as the test set each time. Each subsets is used once as the
test set. The average performance over these ten trials is calculated and
assumed to give a good expectation of the generalizability of the classifier,
i.e. the performance of the classifier with new data.

2.4 Inferring Information from Keystroke Timings

In addition to identification and authentication, keystroke timings can be
used for inferring other information, such as demographic information [32],
programming performance [42,45,46, 68|, programming experience [42], and
emotional states [9,22,73]. Idrus et al. have shown that demographic infor-
mation such as age and gender can be inferred from typing data [32]. They
were able to identify demographic information from both password typing
and free text typing. This kind of information could be used in authen-
tication: if the typing profile of the person who typed the password does
not match the demographics of the user, entry to sensitive systems could
be rejected. It could also be used for targeted advertising — a website could
gather typing data and display advertisements relevant to the user based on
demographics.

2.4.1 Programming Performance

There have been numerous studies showing a relationship between keystroke
latencies and programming performance [42,45,46,68]. Intuitively, an ex-
perienced programmer is likely to have a different typing pattern compared
to a novice programmer as the type of text found in source code is typically
quite different from other texts, e.g. essays. Especially certain programming
related character pairs — digraphs — are most likely typed faster by an expe-
rienced programmer. Being able to infer the programming performance of
a student could allow educators to identify struggling students based solely
on their typing.

Thomas et al. have studied the relationship between keystroke latencies
and programming performance [68]. They categorized digraphs into seven
categories and calculated the mean latency by category. The categories
were based on the type of the digraph: alphabetic characters, numerical
characters, control keys, other keys, browsing keys, edge digraphs, and the
H-category, which are digraphs where one of the keys is a browsing key.
Their motivation behind the categorization is that similar digraphs likely
have similar latencies; for example while there is probably a difference be-
tween the typing speed of alphabetic digraphs and browsing key digraphs,
the latencies within these categories are probably close to each other. They
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analyzed the correlation between each of the categories and the programming
performance of the students. They conducted two experiments: in the first
one, programming performance was analyzed based on evaluation of code
by experienced programmers and in the second, programming performance
was measured by the score the students got in a lab exam and a written
test. Their results indicate that there are strong statistically significant
correlations between the mean latencies of some categories and program-
ming performance. Especially numeric, edge, and the H-type digraphs had
strong negative correlations with performance — this means that those who
typed a digraph from these categories more quickly achieved better results
in performance.

Recently, Leinonen et al. [42] partially replicated the study by Thomas
et al. [68] by analyzing the relationship between programming performance
and certain digraph latencies. They were only able to do a partial replication
as information on control and browsing characters was not included in their
data. Their results, while not as significant as Thomas et al’s, were in line
with the original study. Additionally, they found that the amount of data
has a significant effect on being able to observe the correlations. In addition
to replicating Thomas et al’s study, they explored a number of machine
learning methods to classify the students based on their exam performance.
The Bayesian Network and Random Forest classifiers had the best average
performance in the task, when evaluated with 10-fold cross-validation using
classification accuracy and Matthews Correlation Coefficient [60] as perfor-
mance measures. Matthews Correlation Coefficient is a measure used to
assess the quality of predictions of a classifier. It is different from identi-
fication accuracy in that it takes into account also false values, i.e. false
positives and false negatives, in its measures. The value is between -1 and
1, where 1 corresponds to perfect classification, -1 corresponds to perfect
misclassification, i.e. all values are the opposite of their true values, and 0
corresponds to predictions that are essentially random.

2.4.2 Programming Experience

Programming experience has been shown to increase programming perfor-
mance in some contexts [26,75], but contrary results exist [8]. If program-
ming performance is affected by programming experience, the correlation
between typing patterns and programming performance could be just mani-
festing the programming experience of the students, i.e. the students might
only be performing better due to having programming experience.

In addition to replicating the study by Thomas et al. [68], Leinonen
et al. [42] described an experiment where they sought to identify students’
past programming experience from keystroke latencies. They divided stu-
dents into two populations: those with some programming experience and
those with none. Then, they analyzed multiple different machine learning
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methods such as decision trees, Bayesian classifiers, and rule learner classi-
fiers for classifying the students based on programming experience. Similar
to the programming performance predictions, they found that the Bayes Net
and Random Forest classifiers had the best average performance when evalu-
ated with 10-fold cross-validation using classification accuracy and Matthews
Correlation Coefficient [60] as quality measurements. They observed up to
77% classification accuracy and a Matthew’s Correlation Coefficient of 0.54
in predicting whether a student had programmed previously or not. As
an example, they showed that on average, experienced programmers move
faster from the key 7 to the key +, i.e. experienced programmers type the
digraph ¢+, faster than novice programmers. The probability distributions
for this digraph’s average latency for both experienced and novice program-
mers are depicted in Figure 2. Intuitively, this makes sense as the digraph i+
is something programmers type often when incrementing an index variable,
while it rarely occurs in regular text.

Leinonen et al. [42] also analyzed individual features, i.e. digraphs. They
performed a qualitative analysis on a combination of the selected features
that had the most predictive power over programming experience. Overall,
special keys dominated the list, appearing in nearly 40% of the selected at-
tributes. This is perhaps not surprising, as experienced programmers have
probably used them before, and therefore are more familiar with their loca-
tion on the keyboard. The most relevant digraphs for distinguishing between
novices and non-novices are programming-related, and can be categorized
into four categories: common commands, such as incrementing a variable
(i++) or using the "OR"-operator (| |), common keywords such as true, tran-
sitions between characters that require the use of e.g. shift, ctrl or alt, such
as typing opening and closing brackets ({}), and the speed from backspace
to various characters, which is likely related to rapid fixing of misspellings.

The difference between the speed with which a novice and non-novice
moves typing specific character-combinations, here from typing the character
i to +, is illustrated in Figure 2 and in Figure 3 for typing the character
| twice. In the figures, the typing speeds for the digraph are normalized
between 0 and 1 over all the students, and displayed as two probability
density functions that depict the novices and non-novices.

Automatically inferring programming experience from typing could be
useful for many purposes. For example, even if a course has a background
survey, some students may choose to not answer. In addition, there could
be cases where typing patterns for a course have been collected, but not
programming experience information. In those cases, it could be beneficial
to be able to at least make an informed guess on the programming experience
of students.
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The normalized transition time between characters i and the plus sign. Lower is faster.

Figure 2: Smoothed probability density function of the times taken between
pressing the characters i and + by novice and experienced programmers [42].

2.4.3 Emotional States

In addition to somewhat static attributes such as the identity, programming
performance, and programming experience, keystroke analysis has been used
to detect constantly changing features such as boredom and engagement [9],
stress [73], and emotional states in general [22]. One of the advantages of
measuring emotional states through keystrokes is that it is non-intrusive
and cheap compared to other methods as noted in much of the research on
keystrokes and emotions [9,22,73].

Bixler et al. [9] studied whether keystroke analysis could be used for de-
tecting boredom and engagement during writing tasks. They conducted an
experiment where students had to write three essays. They categorized stu-
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Figure 3: Smoothed probability density function of the times taken to press
the character | twice by novice and experienced programmers.

dents’ emotional states to engaged, neutral, and bored. They first measured
emotions by filming students while they watched a video and had to self-
evaluate their emotions at different points of the video. Then they observed
students’ reactions during the writing sessions and compared them to the
emotions during the video session. They evaluated many machine learning
methods and achieved up to 87% accuracy at classifying the student either
bored or engaged based on the keystroke latencies. They note that results
were not as good when instead of only binary classification into bored and
engaged, the neutral emotional state was taken into account.

Vizer et al. [73] used keystroke features, pausing behavior and linguistic
features for detecting stress. They designed a study where participants took
part in four different experiments: two under no stress and two under stress.
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The stress was induced by having participants complete cognitive or physical
tasks before having them write a typing sample. The keystroke features
they used included both relative amounts of different types of keystrokes,
e.g. amount of arrow and space keystrokes as well as time per keystroke,
i.e. the typing speed. The linguistic features they used included e.g. the
relative amounts of nouns, verbs, word lengths, and positive and negative
connotations of words. After the experiments, they used machine learning
methods such as decision trees, support vector machines, and k-nearest-
neighbor to classify typing samples into those written under stress and those
written without stress. They were able to achieve accuracies of up to 75%. In
addition to studying classification, they examined which features were best
at classification. They found that for both physical and cognitive stress,
relative amounts of some keystrokes were good at prediction. Interestingly,
for physical stress, the average pause length had good predicting power,
while for cognitive stress, the average time per keystroke had good predicting
power, but neither feature had good predicting power for both physical and
cognitive stress.

Compared to Bixler et al. [9] and Vizer et al. [73], Epp et al. [22] re-
searched emotional states more generally. While Bixler et al. and Vizer et
al. only studied boredom and engagement, and stress respectively, Epp et
al. examined 15 emotional states. Epp et al. collected the data for their
experiments by having a program run in the background while participants
were on the computer. The program collected all keystrokes the users typed
and would occasionally ask the user about their mood, i.e. emotional state.
After filling the emotional state questionnaire, the user typed a fixed text.
The 15 emotional states were measured by statements the user could agree
or disagree with such as "I feel bored" or "I am focused". After collecting the
data, Epp et al. extracted keystroke features such as digraphs and trigraphs
out of the raw data. After feature selection, they used decision trees to
classify typing samples based on emotional state and evaluated their model
with 10-fold cross-validation. Their results indicate that some emotional
states can be inferred from typing patterns better than others; for example
tiredness and sadness were inferred very well, but relaxation and excitement
were not. Classification accuracies of over 85% were achieved with some
emotional states, e.g. tiredness and sadness.

2.5 Data Anonymization and De-Identification

In this subsection, we first describe identifiers that can be present in data,
and then review a few studies on data anonymization focusing on the data
anonymization methods in the studies.
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2.5.1 Identifiers in Data

There can be different types of identifiers in data. Faplicit identifiers are
identifiers that can be used for identification by themselves [23]. For exam-
ple, in medical records these could be names and social security numbers,
while in source code snapshots these could be the student number and name
of the student. They are easy to delete by going through the data and
identifying certain attributes as explicit identifiers to be deleted. Deleting
them is also sensible from the viewpoint that no valuable information is lost
when they are deleted. For example, in keystroke latency -based studies, the
student number or the name of the student are very unlikely to correlate
with any of the other attributes in the data, and even if they do, it is almost
certainly just due to randomness. The only case where there might be cor-
relations that are not random are when some other variable is causing the
correlation, which means that even in this case the explicit identifiers are
conditionally independent with all the attributes in the data. For example,
student numbers will probably correlate with the year the students started
studying as student numbers are assigned in a sequential order. Further-
more, the starting year will probably correlate with the amount of credits a
student has. In this case, the real correlation is between the starting year
and the amount of credits, so given the starting year, the amount of credits
and the student number will not correlate, i.e. it is not possible to predict
the amount of credits based on the student number for all students who
started studying in a certain year.

A harder challenge is to first identify quasi-identifiers [23] and then fig-
ure out what to do with them. Quasi-identifiers are identifiers that can not
be used for identification in isolation, but can be combined together with
other quasi-identifiers to identify individuals. For example, age is not an
explicit identifier, since there are millions of people who all share the same
age. However, if age is combined with other quasi-identifiers, accurate pre-
dictions about identity could be made. For example, it could be possible
to identify who the person is if it is told that they are a 24-year-old re-
search assistant living on a certain street in Helsinki and that they study
computer science for the fifth year at the University of Helsinki. However,
simply identifying attributes as quasi-identifiers is not enough. One could
propose to delete such data altogether, but valuable information could be
lost in the process [17]. For example, in keystroke data, the timings of the
keystrokes are quasi-identifiers. A single timing will not reveal the identity
of the typist, but combining all timings can be used to build a typing pro-
file which can be used for identification [47]. Simply removing all keystroke
timings would prevent identification based on typing patterns, but then the
data could not be used for other keystroke latency -based studies such as
inferring programming experience of the typists [42].

As removing all quasi-identifiers can reduce the value of the data sig-
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nificantly, quasi-identifiers are sometimes not removed from the data, but
modified somehow to make it harder to use them for identification purposes.
For example, in generalization [64], quasi-identifiers are modified to be more
common: as an example, age could be reported to be within a certain range,
e.g. 18-25, which would in turn make it harder to use it for identification.
However, while modifying quasi-identifiers can make identification harder,
it is not guaranteed to do so. For example, if there is only a single per-
son in the data between the ages of 18 and 25, then modifying their age
from the exact value to the range will not have an effect on identification,
but will reduce the quality of the data. k-anonymity [67] is a measure for
the degree of anonymity of data that has been developed to guarantee that
anonymized, or de-identified, data can not be re-identified, i.e. that indi-
viduals can not be identified from the data. In k-anonymity, the goal is
to make each individual’s data similar to at least k — 1 other individuals;
in other words, divide the data into blocks of k indistinguishable individu-
als who are essentially the same from the identification viewpoint. While
k-anonymity can guarantee that individuals can not be identified, it might
reduce the quality of the data. For example, in keystroke latency studies,
forcing at least k individuals to have exactly the same typing profile would
likely make inferring other information than identity infeasible as well. The
following section will present some studies related to data anonymization in
more detail.

2.5.2 Data Anonymization

Anonymity in data is often achieved by removing attributes from the data [23,
56, 66], reducing the accuracy of the data, e.g. by grouping and smooth-
ing [29,37] and by adding noise or fake information [21,37]. Sun and Upad-
hyaya have developed a rule-based data sanitization method to remove sen-
sitive information such as social security numbers from keystroke data [66].

Fung et al. outline four different types of attributes in data which re-
serve privacy: explicit identifiers, quasi-identifiers, sensitive attributes, and
non-sensitive attributes [23]. As an example of anonymizing data by re-
moving explicit identifiers and quasi-identifiers, network measurement data
could be anonymized by removing attributes such as packet payloads and
ip-addresses [56]. Daries et al. [17] analyzed the anonymization of data
collected on MOOCs. They found two explicit identifiers — username and
ip-address — and six quasi-identifiers — country, age, gender, and level of ed-
ucation of a participant as well as course id and the amount of forum posts
— in their data and removed them.

In addition to removing attributes, other approaches for preserving ano-
nymity have been suggested. For example, He et al. [29] suggested anonymiza-
tion of set-valued data by distributing the data into buckets. Their work
was motivated by the fact that the previously suggested approaches work
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well only if a subject is associated with a single sensitive value at a time,
which does not suit set-valued data well. Similarly, Samarati et al. sug-
gested replacing values in the data by semantically consistent less precise
alternatives [64], i.e. generalization or rounding. A challenge here is to find
an optimal degree of anonymization where data is minimally distorted while
identification of subjects is still made improbable.

Recently, Monaco and Tappert developed two obfuscation strategies in
the context of a third party continuously recording keystroke data [49]. They
were able to decrease identification accuracy on average by 20% by adding
a 25 ms random delay to the keystroke events and found that a delay of 500
ms was needed to reduce identification accuracy by half. In the context of
a constant flow of keystrokes, there is a constraint that the anonymization
should not affect the user experience, e.g. an added delay can not be no-
ticeably long. However, in our context of open data sets there is no such
constraint, which allows calculating optimal degrees of anonymization post
hoc.
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3 Research Design

In this section, we will present our research design for this work. We will
formulate the research goals and questions and detail the data used in the
experiments. We describe the context of the data, i.e. the courses from
which the data is gathered and the data gathering mechanism.

3.1 Research Questions

In this work, we seek to determine how different degrees of anonymization of
programming course data affects attributes that can be inferred from typing
profiles. Our research questions are:

RQ 1. How does anonymization by rounding keystroke average latencies
affect identification accuracy?

RQ 2. How does anonymization by bucketing affect identification accu-
racy?

RQ 3. How does anonymization affect inferring programming experience
from typing profiles?

With the first research question, we seek to determine how rounding av-
erage latencies can be used to anonymize keystroke data. Rounding is similar
to generalization [64] in that it makes the data less exact. We hypothesize
that rounding the individual latencies in the data enough will affect the av-
erage keystroke latencies enough to render identification hard. Essentially,
by rounding the latencies in the data, we hope that the typing profiles of
the individuals will be adequately similar to each other so that the profiles,
and thus individuals, can not be differentiated.

With the second research question, we explore whether splitting the
data into even-sized buckets works for anonymization. Distributing the data
into buckets, or bucketing, is in many ways similar to rounding the values.
In both rounding and bucketing, the data is generalized, i.e. made less
exact. We hypothesize that bucketing the keystroke latencies can be used
for preventing keystroke latency -based identification similar to rounding the
values.

Finally, with the third research question, we examine the extent of
anonymization one can perform whilst still retaining information about pro-
gramming experience. We are interested in finding an optimal amount of
anonymization where identification is no longer practical, but programming
experience can still be inferred. To study this, we will conduct experi-
ments with varying amounts of anonymization, comparing identification ac-
curacy with classification accuracy. We set a requirement that individuals
should not be able to be identified from the anonymized data based on their
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keystroke latencies. We try to find a "sweet spot" where the programming
experience of the individuals could be inferred but the identity could not.
This would provide sanguine expectations that valuable information can be
retained in anonymized keystroke latency data.

The overarching goal of this work is to seek an optimal anonymization
procedure for keystroke latency data in order to remove a quasi-identifier
from such data. Finding a procedure that could anonymize keystroke latency
data while preserving valuable information would be a first step towards
releasing such data openly to others. So far, the possibility of identifying
individuals in such data has been a barrier to for example providing source
code snapshot data sets openly for replication studies.

3.2 Context

The data used in the experiments comes from two similar introductory Java
programming courses held in the autumns of 2014 and 2015 at University of
Helsinki. Both courses lasted for 7 weeks. The courses taught the students
programming basics such as variables, loops, input, and output. Both data
sets were used in the identification experiments, but only the autumn 2014
course had information available on students’ programming background, and
therefore was the only one included in the programming experience exper-
iments. These data sets are the same as the ones used in previous studies
by Leinonen et al. [41,42], Longi et al. [47], and Leppénen et al. [43,44].

The students used an integrated development environment (IDE) for
working on the course assignments. Using an IDE accustoms the students
to professional software development tools from early on in their studies.
The IDE recorded a snapshot for each action where the student modified
the code while they were programming. The snapshots have a nanosecond
level timestamp in addition to keystroke information. Students could turn
the data gathering mechanism in the environment off if they chose to — data
for this study was provided on a voluntary basis and no incentives were given
to students who provided the data.

3.2.1 Programming Courses

The seven week long introductory course teaches students basic program-
ming concepts. During the first week, students learn variables, printing
output and reading input, and the while loop. On the following week, they
are taught the usage and construction of methods. In the third week, the
students get a taste of object-oriented programming and lists, and these
topics are taught in more detail on the rest of the weeks. On the last week,
students learn the basics of tables and sorting. The structure of the course
was the same in both 2014 and 2015.

The main learning material on the courses is an online material, which
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includes text sections detailing programming concepts blended with assign-
ments and questionnaires. Most students follow the material in a linear
fashion, first reading about a concept, and then completing accompanying
assignments and questionnaires related to that concept .

While there is a single two hour lecture each week on the courses, the fo-
cus is heavily on the weekly programming assignments. In the 2014 course,
two thirds of the grade were based on the amount of assignments that were
completed correctly, and in the 2015 course, exercise points accounted for
70% of the grade. The course assignments are accompanied by unit tests,
which the students can run locally to check whether their program corre-
sponds to what is required in the exercise. When the student is ready, they
can submit their answer to the server, where unit tests are run again. Some
of the harder exercises have so called "hidden tests", which are only run on
the server, to prevent students from hard-coding their program to only pass
the local tests.

There are about 10-20 assignments per week and the assignments for a
single week increase in difficulty. The last couple of assignments of a week
are often open-ended and more difficult than the previous assignments. They
tie together many of the concepts learned on the week and correspondingly
yield more points. The students can get help on the assignments in lab
sessions, where the extreme apprenticeship [40,70] method is used. Extreme
apprenticeship means that the teaching assistants in the lab sessions are
mostly students who have only completed the course very recently, usually
in the previous year. Lab sessions are organized almost daily, and there is
around 20 hours of lab sessions per week.

3.2.2 Data Gathering

Most of the students use the integrated development environment (IDE) Net-
Beans with a custom plugin called TestMyCode (TMC) [57] when working
on course assignments. TestMyCode is used by the students to download
the weekly exercises, test whether their solutions pass the unit tests that
come with the exercises, and submit their correct solutions to the server to
get credit for completing the exercises. TestMyCode has an option to collect
source code snapshots for research purposes: the students are allowed to turn
off data collection and do not receive any incentives such as course points
for providing their data. TestMyCode only collects data from the course
exercises, notably, it does not collect data from personal or work-related
programming projects. Figure 4 illustrates how TMC works.

Source code snapshots are collected after any change is detected in the
text content, i.e. the source code, and when the students run unit tests or
submit their code to the server for evaluation. A limitation of this is that

!Confirmed in yet unpublished research.
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Figure 4: Source code snapshots are collected by the TestMyCode (TMC)
plugin in the NetBeans IDE. Students can send their solutions to the TMC
server, which gives students credit for correct solutions. If the students do
not opt out of data gathering, TMC will also continuously collect source
code snapshot data and send them to a snapshot repository for research
purposes.

only visible source code changes are recorded as keystrokes, for example,
pushing of the control- or the shift-key is not recorded. In addition to the
visible changes, the source code snapshots also include a timestamp, stu-
dent id, course id, and assignment id. Latencies between keystrokes can
be derived by observing changes between subsequent snapshots — for exam-
ple, if the last character of a snapshot is a, and the next snapshot has the
character b added after a, and the timestamps of the snapshots are ¢ and
d, then we can deduce that the observed latency of the digraph ab in this
case is d — ¢ time units. In our source code snapshots, the timestamps are
in nanoseconds, which are converted to milliseconds in the analysis in this
work.

It should be noted that from the snapshots alone, we do not know which
computer and keyboard the students are using during an exercise. Students
can take advantage of the computer labs at the University where teaching
assistants can provide help on the exercises. However, the students can
also complete the exercises individually in any environment they find most
suitable. Due to this, students can even change computers (and keyboards)
within a single exercise.

For the programming experience inference experiments, we used data
from a background survey the students can answer in the beginning of the
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course. The background survey has mostly questions about demographics
such as age and gender, but also about programming experience. For the
programming experience inference experiments, we categorized the students
into two cohorts — those with no previous programming experience and those
with at least some programming experience.
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4 Methodology

In this section, we outline our research methodology for conducting the
experiments and answering our research questions.

4.1 Data Preprocessing

For preprocessing the keystroke data, we followed the procedure outlined in
the study by Longi et al. [47]. Only digraphs with latencies between 10 ms
and 750 ms were included as first done by Dowland and Furnell [20]. The
lower bound is necessary to eliminate auto-completion events from the IDE
or cases of two keys being struck together accidentally. The upper bound is
needed to only capture the subconscious typing rhythm of the student and
to remove any breaks they might take while working on an exercise.

Since the typing profiles are built with average latencies, we required
that a student should have at least five occurrences of any digraph used
to build their typing profile as first done by Killourhy and Maxion [38]. If
the student had only typed a digraph under five times, the average latency
for that digraph was excluded from the student’s typing profile. Snapshots
where multiple characters were added at the same time were discarded as
they were almost exclusively copy-paste events.

The students who did not volunteer to provide their programming back-
ground details were excluded from the programming experience study. The
autumn 2014 course had 199 students, of which 82 students (41.2%) had
at least some programming experience and 117 (58.8%) had none. The au-
tumn 2015 course used in addition to the 2014 course in the identification
experiments had 153 students. We excluded students who opted out of the
data gathering, as well as those who typed less than 2000 characters during
the first week of the course. On average, the students type 7500 characters
during the first week, which means that only students who worked on more
than one quarter of the first week were included. This was done so that
students who drop out or turn off the data gathering mechanism on the
first week do not introduce unnecessary noise to the data analysis. After
preprocessing, there were 199 students left in the autumn 2014 data set and
153 in the autumn 2015 data set.

4.2 Identification

For the identification experiments, we use the acceptance threshold method
introduced by Longi et al. [47] where a match in the top k closest training
set samples is considered correct for a specific test sample. The idea behind
this is that exact identification is not always mandatory. For example, for
authentication in online exams, it is sufficient to be quite sure that the
students are who they claim to be. The parameter k controls the balance
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between two types of error: larger values of k increase the identification
accuracy, but also make it easier for impostors or cheaters to masquerade as
the genuine user. The probability for an impostor being successful is k/n,
where n is the number of students, assuming the typing profiles are uniformly
distributed, i.e. random. In a real world scenario, an impostor could possibly
have at least partial information about the typing profile of their victim or
the true distribution of the typing profiles, and would therefore be able to
increase their chances of impersonating the victim. Optimally, the smallest
value of k that has sufficiently high identification accuracy should be used.

To build the typing profiles, the average latency between two specific
characters was calculated for all character pairs, i.e. digraphs, for each
student in the data. In addition to the average digraph latencies, the average
typing speed of the user was included in the typing profile. If a student had
not typed a digraph, the missing value was replaced with the student’s
average typing speed. After this, the different anonymization procedures
were performed with the data. The anonymization process is analyzed in
more detail in Sections 4.5 and 4.6. After the anonymization procedure, the
typing profiles still consisted of average digraph latencies and the average
typing speed in milliseconds. Before calculating the distances, the values
were normalized to be within the range from zero to one. This was done so
that all digraphs would affect the distance equally, i.e. that digraphs with
large average latencies would not affect the results more than digraphs with
smaller average latencies. For example, digraphs between special keys and
keys that are far apart from each other on the keyboard will understandably
have large average latencies, while keys that are near each other will have
small average latencies. We consider that the relative differences between
digraph latencies of subjects are more telling of the identity of the subject
compared to absolute differences. Normalization was done with Equation 1,
which modifies each feature z; € R>¢ into 2 € [0,1]. @, denotes the
minimum value of the feature in the data and z,,,; denotes the maximum
value of the feature in the data. For example, if the minimum value for the
feature in the data was 100 milliseconds and the maximum value was 500
milliseconds, a value of 300 milliseconds would be converted to be 0.5, since
it is in the middle of the range from 100 milliseconds to 500 milliseconds.
The resulting feature vectors for the students were vectors of values between
0 and 1.

Tmazr — Tmin
For both data sets used in the identification experiments, we chose to
build the typing profiles in the training set from the first six weeks of ex-
ercises and used the data from exercises of the last week as the test set.
To determine if a test sample was correctly identified, we calculated the eu-
clidean distance to each training set sample. Euclidean distance is calculated
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with Equation 2, where z is the feature vector for one student and ¥ for the
other, and n is the amount of features. The feature vectors include the aver-
age digraph latencies. In the cases where one of the students did not have a
value for a specific digraph, i.e. z; or y; in Equation 2, their average typing
speed was used instead. After having calculated the distances from the test
sample to the training samples, the training samples were sorted based on
the euclidean distance from the test sample. We used an acceptance thresh-
old of £ = 10, and thus regarded the student to be correctly identified if
their typing profile was in the top 10 closest training set matches.

4.3 Programming Experience Inference

Farlier research indicates that the Bayesian Network and Random Forest
classifiers have good performance at classifying students in the context of
inferring programming experience from typing profiles [42]. Therefore, we
classify the students into two groups: those with some programming expe-
rience and those with none using the Bayesian Network, Random Forest,
and majority classifiers. We chose to use 100 decision trees in the Random
Forest with each tree considering six random features. This was done so
that the decision trees within the Random Forest would not correlate and
thus overfit their training data [10]. The majority classifier will classify ev-
ery sample to the majority class, and is therefore good as a baseline against
which the performance of the other two classifiers can be measured. The
classification accuracy is evaluated using 10-fold cross-validation.

4.4 Feature Selection

In this subsection, we first review what kind of an effect feature selection can
have on identification accuracy. Then, we present the features that will be
used in the experiments, motivations for selecting those features, the issue
of overfitting that feature selection in general can both cause and cure, and
the measures we take to avoid overfitting in our experiments.

4.4.1 Effect of Feature Selection on Identification Accuracy

Leinonen et al. [41] have studied the effect of feature quantity on identi-
fication accuracy to see how the feature count influences the identification
accuracy. Their results show that for identifying students precisely, i.e. with
an acceptance threshold of one, 50 features seem to be enough as the increase
in accuracy with 100 features is not significant enough to warrant increased
complexity. If a student is allowed to be within an acceptance threshold of
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Table 1: The 25 most common digraphs in the 2015 introductory course
data set which were used in building the typing profiles for that course [41].

from key | space | t |n |1 |a|a = rljlt]|{]|l|h
to key = ult|u|r|t]|space |i|a|h|}|i]]i
fromkey | i | s | o | backspace | k | i |t | v | u t e | u
to key n|t|u| backspace | u | s | a | a | k| space | t | t

5 or 10, 25 features seem to suffice. Their results for the 2015 introductory
course data set are presented in Figure 5. That same data set will be used
in our identification experiments later in this work. The figures for other
data sets showed similar diminishing returns in the increase of accuracy af-
ter around 25 features. The 25 most common digraphs for the same set are
presented in Table 1. Since the digraphs are from a programming context,
the most common ones include digraphs related to programming such as the
digraph used in creation of Java’s code blocks { -> }, and ¢ -> n and n ->
t from writing int which defines the type of a variable to be integral.

Their conclusion is that 25 digraphs is optimal as adding more features
beyond 25 seems to only marginally increase identification accuracy. How-
ever, adding more could possible result in overfitting, which is to be avoided.

4.4.2 Identification

In the study by Longi et al. [47] that introduced the acceptance threshold
method we use in our identification experiments, the typing profiles were
constructed using three different types of features: 1. the average latency
between any two keys, i.e. the typing speed of the student, 2. single charac-
ter latencies, i.e. the average latency from any key to a specific key, and 3.
digraph latencies, i.e. the average latency from a specific key to a specific
key. Since digraph latencies have been shown to work better than the other
two types or a combined feature vector that includes all three types [47], we
only use digraph latencies in our experiments.

For exploring how identification accuracy suffers when the data is anony-
mized (RQ1 & RQ2), the 25 most common digraphs were used to construct
the typing profiles as first done by Leinonen et al. [41]. The most common
digraphs were determined by sorting the digraphs by the median amount
of times the students had used them in both the training and the test set.
One digraph corresponds to one feature, and for a feature to be included
from a specific student, the student had to have at least five instances of the
digraph in the data.
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Figure 5: Smoothed identification accuracy plotted against the number of
features. The threshold specifies the number of students that are considered
to be correct for identification purposes. The figure shows that using around
25 features provides a good identification accuracy with all three thresholds
and that the accuracy starts to deteriorate after around 150 features, espe-

cially with a threshold of 1, i.e. exact identification [41].

4.4.3 Programming Experience Inference

In the feature selection for the programming experience data set (RQ3), we
followed the procedure outlined by Leinonen et al. [42] for inferring program-
ming experience from typing profiles. Features with no data (e.g. digraphs
that no student had typed) were removed. Then, the BestFirst feature selec-
tion algorithm in the WEKA Data Mining toolkit [28] was used for feature
selection. The BestFirst algorithm starts with an empty set of features,
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populating it one by one and observing the effect on identification accuracy.
If identification accuracy does not improve for five additions in a row, the
algorithm backtracks and removes features that did not increase identifi-
cation accuracy. In other words, it greedily searches the parameter space
for optimal features to include in the feature set. Out of more than 10000
initial features, less than 50 features were included in both the 2014 and
the 2015 data sets after the feature selection. Feature selection can reduce
overfitting, shorten training times, and improve the interpretability of the
resulting model, i.e. make it more understandable. For example, for infer-
ring programming experience, it would be understandable that the average
latencies of programming related digraphs would best predict the program-
ming experience of the student, since expert programmers probably type
those digraphs faster than novices on average. Thus, we would expect our
model to be based on those digraphs.

4.4.4 Avoiding Overfitting

A concern that arises from feature selection is the possibility of overfitting
the model to the training data. Overfitting happens when the model does not
generalize well due to being too complex. While an overfitted model might
achieve good results on the training data, it might be poor with new data
that the model was not exposed to during training. A model can become too
complex for many reasons, for example due to adding unnecessarily many
parameters to the model. While feature selection is usually used to reduce
the amount of features in the model, for example in our experiments, and
consequently reduce overfitting, the choices made in selecting the features
can result in overfitting if the selected features do not generalize to other data
sets. Some features might be good at prediction overall within a domain,
while others just happen to be good with a certain data set. For example, the
average latency for a programming related digraph will probably generalize
quite well and be good at predicting programming experience regardless
of the data set. However, since the amount of features can be huge (e.g.
over 10000 in our experiments), there will likely exist features that are not
programming related, but still have good predictive power for programming
experience in some data set.

As a somewhat extreme example of overfitting in the context of identi-
fying students, consider a scenario where we are trying to predict students
correctly in a data set with 200 students. Let’s say we have black box model,
i.e. we have no idea of how the model works internally, but we know that
it uses 200 digraph average latencies as features. What we would optimally
want in this scenario is that the students are identified based on their av-
erage digraph latencies. However, what could happen in theory, assuming
we do not know how exactly the model is fitted, is that the model learns
to identify the students so that one feature corresponds to each student.

33



For example, it could learn that student A has an average latency of 500
milliseconds for the digraph ab in the training set, and only ever use the
digraph ab when identifying student A. The model would achieve perfect
identification accuracy on the training set, but would not be able to iden-
tify the students in a test set very well, since it is highly unlikely that the
students would have the exactly same average latency in the test set at the
millisecond level. Another possibility could be that the model only learns
to identify students based on unique digraphs the student may have in the
training set. For example, for each student, it could find a digraph that
only the examined student has typed, and identify based on the existence of
that digraph in the typing profile. Again, the model would achieve a perfect
100% identification accuracy with the training set, but it is not guaranteed
that the unique digraphs are the same in the test set. Thus, it would again
most likely perform poorly with the test set.

We try to limit the possibility of overfitting in multiple ways. First of
all, in the identification experiments, we only use the 25 most common di-
graphs. This means that there are a lot less features than students, which
reduces the chances of overfitting. In the programming experience inference
experiments, we use the WEKA Data Mining toolkit [28] for feature selec-
tion. Less than 50 features out of the initial over 10000 were left in the data
set afterwards. The features were selected based on their predictive power
over programming experience, i.e. we used the features that are best at pre-
dicting the value of the programming experience variable. The features, in
this case digraphs, were confirmed by the author to be sensible — most were
obviously programming related such as the OR-clause in conditions // and
i+ from typing i+-+ which is used in Java to increment an index variable.
Note that these are not necessarily the most common digraphs opposed to
the identification experiments in which the 25 most common digraphs were
used.

4.5 Anonymization by Rounding

We use an anonymization technique similar to generalization [64] where the
values in the data are rounded to reduce identification accuracy (RQ1). To
investigate how rounding the average latencies in typing profiles affects pro-
grammer identification and classification based on programming experience,
we modified the latencies using Equation 3. It rounds the latency z to the
nearest x, where x is the number of milliseconds given to the anonymization
function as a parameter. The resulting value y is then used instead of the
original value z in the construction of the typing profile. The aim is to re-
duce the accuracy of the data, hopefully reducing identification accuracy in
the process, which would anonymize the data. We studied how identification
accuracy deteriorates when the value of x is increased.
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y =z xround(z/x) (3)

Equation 3 essentially distributes the average latencies into buckets. For
example, if z is 100 milliseconds, all latencies will be rounded to the nearest
multiple of 100. This leads to all latencies between 0 and 50 ms being
rounded to 0 and distributed to the first bucket, all latencies between 50
and 150 ms being rounded to 100 and distributed to the second bucket, all
latencies between 150 and 250 ms being rounded to 200, and so on.

After rounding the average latencies, the data was normalized to reduce
the effect of digraphs with large average latencies on the distance calcula-
tions. Then, the euclidean distances from each test sample, i.e. the typing
profile from last week of the course, to the training samples, i.e. the typ-
ing profile from the first six weeks of the course, were calculated. For each
test sample, the closest ten training set samples were checked (k = 10 in
Longi et al. [47]’s identification model), and if any of them were authored by
the author of the test sample, the author of the test sample was considered
correctly identified.

4.6 Anonymization by Bucketing

The buckets that result from the rounding method are not equal in size: the
size of the first bucket is half the size of the subsequent buckets. Motivated
by this we analyzed whether distributing data into even-sized buckets could
be used for anonymizing keystroke data (RQ2). We modified the average
latencies in the data by first increasing each latency z by half of the size b
of the buckets using Equation 4, and then rounding each latency z; to the
nearest z, where «x is the current bucket size b using Equation 5. The result-
ing value y is then used instead of the original value z in the construction
of the typing profile.

21 =z+(b/2) (4)

y = b*round(z/b) (5)

The only difference between this method and the rounding method is
that this method distributes the data into even-sized buckets. For example,
if we have buckets of 100 milliseconds, we want all latencies between 0 and
100 milliseconds to be in the same bucket. Now, any latency between 0 and
100 ms will first be incremented by 50 ms (half the bucket size), leading to
a distribution between 50 and 150 ms. Then, the latencies will be rounded
to the nearest multiple of 100 milliseconds (the bucket size), which in the
case of values between 50 and 150 milliseconds is 100 milliseconds. The
procedure is then repeated for all values between 100 and 200 milliseconds,
etc.
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Again, after rounding the average latencies, the data was normalized,
the distances between test and training samples were calculated, and if the
ten closest training samples as measured by euclidean distance contained the
training sample of the author of the test sample, the test sample’s author
was considered correctly identified.
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Table 2: Identification accuracy percentages with different rounding preci-

sions.

Original | 100 ms | 200 ms | 300 ms | 400 ms | 500 ms | 600 ms
2014 course 98.0 81.7 6.5 72.5 77.1 6.5 6.5
2015 course 97.8 81.3 56.8 67.6 67.6 7.2 7.2

5 Experiments and Results

In this section, we describe the experiments we conducted to answer each of
the research questions and the results of the experiments. We first analyze
how anonymizing data with the rounding method described in Section 4.5
and the bucketing method described in Section 4.6 affect identification ac-
curacy with increasing amounts of anonymization. Then, we examine how
the methods affect inferring programming experience from the data.

5.1 Identification with Anonymized Data

For the identification experiments, we use the acceptance threshold method
introduced by Longi et al. [47] where a match in the top & closest training
set samples is considered correct for a specific test sample. For example,
with an acceptance threshold of ten, identification is deemed to be correct
if the ten closest typing profile matches from the training set include the
typing profile of the test sample student. The distance between two typing
profiles was calculated by the euclidean distance between the features, i.e.
average latencies.

We had two data sets for the identification experiments. For both data
sets, we chose to build the typing profiles in the training set from the first
six weeks of exercises and used the data from exercises of the last week to
build the test sets. To determine if a test sample was correctly identified,
we calculated the distance to each training set sample. We then sorted the
training set samples based on the distance from the test sample. We used
an acceptance threshold of 10, and thus regarded the student to be correctly
identified if her typing profile was in the top 10 closest training set matches.

5.1.1 Identification with Rounding

To answer the first research question, "How does anonymization by rounding
keystroke average latencies affect identification accuracy?’, we calculated
identification accuracies with different amounts of anonymization using the
rounding method.
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Figure 6: Identification accuracy compared against rounding precision. All
values in the data were rounded to a nearest millisecond value. The larger
the millisecond value in the x-axis, the lesser the rounding precision. The
y-axis expresses identification accuracy.

The results of the experiments using the rounding method for anonymiza-
tion are presented in Table 2 and plotted in greater detail in Figure 6. The
millisecond values in the column header of the table represent the rounding,
i.e. how much the latencies were rounded.

When using rounding for anonymization, identification accuracies in
both data sets deteriorate in the first two 100 ms steps, but then get better
or stay equal in the next two steps. After that they start declining again.
The unexpected value of 6.5% in the rounding experiment of the 2014 data
set when rounding to 200 ms, and the dip in accuracy between 150 and 350
milliseconds visible in Figure 6 is discussed in further detail in Section 6.2.
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Table 3: Identification accuracy percentages with different bucket sizes.

Original | 100 ms | 200 ms | 300 ms | 400 ms | 500 ms | 600 ms

2014 course 98.0 26.1 12.4 6.5 6.5 6.5 6.5

2015 course 97.8 31.7 15.8 7.2 7.2 7.2 7.2

5.1.2 Identification with Bucketing

To answer the second research question, "How does anonymization by buck-
eting affect identification accuracy?’, we calculated identification accuracies
with different amounts of anonymization using the bucket method.

The results of the experiments using the bucket method for anonymiza-
tion are presented in Table 3 and plotted in greater detail in Figure 7 The
millisecond values in the column header of the table represent the bucket
size.

Using buckets for anonymization, identification accuracies in both data
sets deteriorate with all 100 ms steps and reach their lowest values already
after three steps. These results are different from the results of the rounding
anonymization method, where the lowest values were only attained after 5
steps and at the third step mark the identification accuracies were still quite
high at around 70% accuracy compared to the around 7% accuracy with the
bucket approach.

5.2 Programming Experience Inference with Anonymized Data

To answer the third research question, "How does anonymization affect in-
ferring programming experience from typing profiles?", we measured classi-
fication accuracies with different amounts of anonymization using both the
rounding method and the bucket method and multiple classifiers.

Table 4 shows the classification accuracy results with different amounts
of anonymization. With the rounding method, classification accuracies de-
teriorate slightly with each step, although there are exceptions. We do not
observe a similar effect as with identification, where the accuracy temporar-
ily improved when transitioning from rounding to nearest 200 milliseconds
to rounding to nearest 300 milliseconds. Similar to the rounding method,
classification accuracies with the bucket method degrade with each step. A
clear difference is that with the bucket method the classification accuracies
decline faster, nearing the performance of the baseline majority classifier
when the bucket size is 600 ms. In contrast, with the rounding method,
Bayesian Network and Random Forest outperform the majority classifier by
over 10 percentage points at the 600 millisecond mark.
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Figure 7: Identification accuracy compared against increasing bucket size.
The data was split into even-sized buckets. The larger the millisecond value

in the x-axis, the lesser the rounding precision. The x-axis represents bucket
size and the y-axis expresses identification accuracy.

5.3 Identification vs Classification Accuracy

With both the rounding and the bucketing methods, programming experi-
ence classification accuracy does not decline as fast as identification accu-
racy. With the rounding method, you could choose to round values to 500
milliseconds, resulting in identification accuracy of around 7%, but a pro-
gramming experience classification accuracy of 73.9% with both the Bayes
Net and the Random Forest classifier, around 15 percentage points higher
than the majority classifier.

With the bucketing method, a lesser degree of anonymization is needed,
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Table 4: Programming experience classification accuracy percentages with
different rounding precisions and bucket sizes.

Method H Rounding

Classifier H Bayes Net | Random Forest | Majority Classifier
0 ms 75.4 73.9 58.8

100 ms 73.9 75.4 58.8

200 ms 73.9 72.4 58.8

300 ms 73.9 70.9 58.8

400 ms 68.3 73.4 58.8

500 ms 73.9 73.9 58.8

600 ms 70.4 71.4 58.8
Method H Buckets

Classifier H Bayes Net | Random Forest | Majority Classifier
0 ms 75.4 73.9 58.8

100 ms 73.4 73.4 58.8

200 ms 71.4 75.4 58.8

300 ms 70.4 71.4 58.8

400 ms 61.3 69.8 58.8

500 ms 64.3 67.3 58.8

600 ms 58.8 60.3 58.8

since already with 300 millisecond buckets, reliable identification is no longer
possible (accuracy is around 7%), but programming experience classification
accuracy is still significantly higher (around 71%) than with the majority
classifier.

The decline in identification and classification accuracy with the round-
ing method is shown in Figure 8 and with the bucketing method in Figure 9.
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Figure 8: Identification (solid line) and programming experience (dashed
lines) classification accuracy compared against increasing rounding amount.
The data was rounded to nearest multiple of X. Programming experience
classification accuracies are shown for three different classifiers: Bayesian
Network, Random Forest, and the majority classifier. The x-axis represents
rounding amount and the y-axis expresses identification and classification
accuracy.

6 Discussion

In this section, we discuss our results. We first ponder the consequences of
our results and their impact. Then, we analyze our results more deeply in
respect of the amount of buckets instead of amount of anonymization. Even
though they do correlate, the relatively small amount of buckets needed
for quite reliable identification warrants further consideration. Lastly, we
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Random Forest, and the majority classifier. The x-axis represents bucket
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discuss some limitations of our work.

6.1 Consequences of Results

In this work, we studied how typing profile data could be anonymized whilst
retaining information important to researchers in the data. The motivation
and long-term goal of the study is to be able to release open data sets where
data that could be used to identify subjects is removed. We explored two
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different ways of anonymizing data consisting of student typing profiles on
programming courses.

For the rounding method, rounding keystroke average latencies to the
nearest 500 milliseconds would be optimal. When rounding to the nearest
500 milliseconds, reliable identification is not possible, since only around 7%
of students are correctly identified with a threshold of £ = 10, i.e. regarding
the student correctly identified if their typing profile is in the top 10 closest
matches, compared to the non-anonymized accuracy of around 98.5%. Nev-
ertheless, with the same 500 millisecond rounding, programming experience
can be inferred accurately for 73.9% students. With the Random Forest
classifier, programming experience classification accuracy has remained the
same as without anonymization, and with the Bayesian Network classifier,
it declined only by 1.5 percentage points.

For the bucket method, the optimal amount of anonymization is quite
different from the rounding method. With even-sized 300 millisecond buck-
ets, identification accuracy has decreased to the lowest value it will reach.
At that point, programming experience classification is possible with around
71% accuracy compared to the 58.8% accuracy with the majority classifier.
The result indicates that the bucket method is more efficient at anonymizing
the data, although more domain-relevant information is lost in the process.

The results demonstrate that at least in the context of inferring pro-
gramming experience, keystroke latency data can be modified in a way that
prevents keystroke latency -based identification, more specifically, identifica-
tion with the model proposed by Longi et al. [47]. Namely, we were able to
remove a quasi-identifier from the data in this context. The context of the
results is important and should be considered when evaluating the results as
the methods studied in this work have only been shown to be able to prevent
a specific identification method, which does not necessarily guarantee that
other identification methods would be affected. For example, identification
based on linguistic features (see e.g. [14]) could very well still be possible as
the textual content of the programming snapshots, i.e. the source code itself,
was not modified. However, if further studies indicate that the anonymiza-
tion methods introduced in this work can anonymize data in respect of other
keystroke latency -based identification models as well, anonymized keystroke
latency data could possibly be made open for researchers. Having open data
sets would enable replication studies conducted with the anonymized data
and also novel studies with existing data. For example, if open keystroke la-
tency data was more abundant, this study and our previous keystroke -based
studies [41-44,47] would have likely included studies with data from other
contexts in addition to our own in order to examine the generalizability of
the results.

The anonymization methods suggested here do not guarantee any form
of k-anonymity [67]. In other words, it is not guaranteed that & individuals
in the data would be indistinguishable, i.e. have exactly same typing pro-
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files. In our context, k-anonymity is likely too strict and would decrease the
quality of the data significantly similar to what happened in Daries et al’s
Massive Open Online Course (MOOC) data de-identification studies [17]
where 5-anonymity was required and results of studies on anonymized data
were significantly poorer compared to studies on the original data. Already
with the amount of anonymization we conduct, the amount of different buck-
ets or options for the keystroke latencies is actually very small. This is due
to the fact that only latencies between 10 and 750 milliseconds were included
in the data. Thus, when the bucket size is for example 250 milliseconds, the
keystroke latency values can only belong to either the 0-250, the 250500,
or the 500-750 millisecond buckets, i.e. only three values are possible. Still,
since the amount of features is large, k-anonymity would probably force
values to be even more similar in order to achieve k-anonymity, i.e. have
k — 1 indistinguishable individuals for each individual in the data. Our hy-
pothesis of k-anonymity being too strict is supported by our results, which
indicate that keystroke latency -based identification can be prevented with-
out achieving k-anonymity at least in our context. In any case, research
conducted on anonymized keystroke latency data should consider whether
the anonymization procedures could have affected the results similar to ear-
lier results in social science research [17]. Yet another concern is whether
other possibly existing data sets could be connected to the openly released
data set as feared by Longi et al. [47] in the keystroke latency field, and as
has happened with movie recommendation data [55].

6.2 Amount of Buckets

The results of the rounding method are interesting due to the fact that only
keystroke latencies between 10 and 750 milliseconds were included in the
typing profiles. When rounding to the nearest 500 milliseconds, there are
only two possible values for the features — 0 milliseconds or 500 milliseconds
— since all values between 0 and 250 milliseconds will be rounded to 0 mil-
liseconds while values between 250 milliseconds and 750 milliseconds (the
upper bound) will be rounded to 500 milliseconds. The result means that
for inferring programming experience from typing profiles with moderately
high accuracy, it is sufficient to categorize all average latencies that the typ-
ing profiles include into two buckets based on whether the student is fast or
slow at writing the digraph.

Another interesting find is that when the rounding method is used, iden-
tification seems quite reliable with an accuracy of around 74% even when
rounding to the nearest 300 or 400 milliseconds, while the results for round-
ing to around 100-200 milliseconds were significantly worse. To further
examine this, we plotted the changes in identification accuracies in 10 mil-
lisecond intervals. The resulting plot is in Figure 6. The local maxima for
the two courses are at 340 ms with 86.3% accuracy and 360 ms with 90.2%

45



accuracy. When rounding to both 340 and 360 milliseconds, there are only
three buckets in our data due to filtering out events that are not between 10
and 750 ms. For example, with 340 milliseconds, values between 0 and 170
ms are rounded to 0 ms, values between 170 and 510 ms are rounded to 340
ms, and values between 510 ms and 850 ms are rounded to 680 ms. The local
minima for both courses are at 170 milliseconds. At that point, there are five
possible values, i.e. buckets for the data: 0-85, 85-255, 255—425, 425-595,
and 595-765 millisecond buckets. This essentially means that using three
buckets yields better results than using five buckets. More generally, the
effect seen in Figure 6 implies that categorizing data into 3 buckets works
better for identification than categorizing data into more buckets, unless the
rounding starts to be insignificant (under 100 milliseconds).

Our hypothesis and a potential explanation is that additional buckets
beyond three add unnecessary noise to the data. For example, with five
buckets — very slow, slow, mediocre, fast, very fast — there might not be
enough average latencies in the very slow and very fast buckets. On the other
hand, some average latencies that should be categorized to the mediocre
bucket for maximal performance might be categorized to the slow or fast
buckets. Another possibility is that the average latencies are distributed
unevenly so that many of them are assigned to the very first bucket in the
bucket method, but into two different buckets with the rounding method.
For example, consider a case where most of the latencies are between 0
and 200 milliseconds and we are rounding to 200 milliseconds. In this case,
the rounding method would have one bucket with the values between 0
and 100 ms, and one bucket with the values between 100 and 300 ms, and
so on. Thus, the rounding method would be able to differentiate the 0—
100 ms latencies from the 100-200 ms latencies, but the bucket method
would distribute all of them into the same bucket and could not differentiate
between them. However, further research is needed to confirm or deny either
of these hypotheses.

Only data from two introductory programming courses with very similar
content were used in the experiments where the peculiar effect in Figure 6
was first observed. To investigate the effect further, we used data from an
advanced programming course to see whether a similar effect of identifica-
tion accuracy temporarily decreasing and then increasing occurs. Again,
we plotted the changes in identification accuracy in 10 millisecond inter-
vals. The plot for the advanced course is in Figure 10. Clearly, the effect is
present also in the advanced course, where content is different from the in-
troductory course: in the advanced course, the students learn more abstract
programming concepts, such as interfaces, inheritance, file handling, and
user interfaces. This result suggests that fine-grained timestamp data is not
actually necessary to identify programmers from their typing patterns. Only
categorizing average keystroke latencies into three buckets — slow, mediocre,
fast — might be enough for reliable identification.
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Figure 10: Identification accuracy compared against rounding precision. All
values in the data were rounded to a nearest millisecond value. The larger
the millisecond value in the x-axis, the lesser the rounding precision. The
y-axis expresses identification accuracy.

Moreover, the observed effect is a cautionary result for researchers seek-
ing to anonymize their data. Using a similar method and observing e.g.
that the identification accuracies are low enough for sharing the data at the
200 millisecond point, and adding an additional 100 milliseconds "just to be
sure', plenty of information that could be used to identify the individuals in
the data would be shared accidentally.

6.3 Limitations

There are some limitations in our study, which we will address here. Firstly,
we have only shown that the approaches covered in this work can prevent
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keystroke latency -based identification when our own previous identification
method is used. It is possible that there are other methods for which nei-
ther rounding or bucketing the keystroke latencies prevents identification.
In addition, we only show that keystroke latencies can not be used for iden-
tification when data has been de-identified with our methods. There can be,
and most likely are, other identifiers in the data. Most obviously, explicit
identifiers such as student numbers must also be removed from any data
that is to be shared.

Even if identifying metadata such as the student numbers are removed,
it is possible that subjects can be identfied based on the text content — both
through explicit and quasi-identifiers in it. A good example is the source
code snapshot data used in the experiments — the very first exercise the
students complete on the course is to print out their name. While many
students only print their first name, or a made-up name, some print their
full name. This is an example of an explicit identifier in the text content.
Furthermore, there can be quasi-identifiers in the text content. For example,
the class and variable names a student uses could exhibit some patterns
which could be used for identification as long as there is enough data. In
addition, comments in the code could be analyzed for linguistic features that
could be used for identification [14].

We chose programming experience as the valuable information we infer
from the anonymized data. While we show that programming experience
can still be inferred when the data is anonymized, it is possible that the value
of the data has degraded in other aspects. It could be possible that the effect
discussed in the beginning of Section 6.2, i.e. two possible values for features
being enough to infer programming experience, is somehow specific to either
our context or programming experience inference, and does not generalize
to inferring other information. For example, Daries et al. [17] analyzed
demographic data from MOOCs and noticed large differences in the results
of their analysis when comparing non-anonymized data with anonymized
data. They suggest that instead of anonymizing data, policies that protect
the privacy of the subjects in the data should be created. They suggest
for example that researchers who are given access to data sets are only
allowed to conduct research where the primary objective is not to identify
the individuals, and that the researchers are ethically and legally bound to
not identify individuals even if it would be possible based on the data.

However, we consider that the experiments conducted in this work are a
first step towards opening data sets for keystroke latency -based replication
studies. We showed that there is a case — programming experience inference
— where valuable information is retained in the data after anonymizing the
keystroke latencies, which removed a quasi-identifier from the data.
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7 Conclusions and Future Work

In this work, we studied two anonymization methods for de-identification
of keystroke latency data. We had source code snapshot data from intro-
ductory programming courses held at the University of Helsinki in 2014 and
2015. The source code snapshots were processed into typing profiles. Previ-
ous research has shown that typing profiles built from source code snapshots
can be used for identifying the typists [47]. Thus, we studied how identifica-
tion accuracy is affected by modifying the keystroke latencies in the typing
profiles. We used the identification model by Longi et al. [47] for the iden-
tification experiments. The objective was to modify the typing profiles so
that identification accuracy would deteriorate. However, anonymization is
only sensible if the anonymized data is valuable in some respect as otherwise
it would not make sense to anonymize it in the first place. Hence, we further
studied how inferring other information than the identity is affected by our
anonymization procedures. As we have previously shown that typing profiles
can be used to infer the programming experience of the programmers [42],
we chose to reproduce those studies using different degrees of anonymiza-
tion as a case study of whether valuable information (now programming
experience) could be inferred from anonymized typing profiles.

The first approach to anonymization we studied was rounding all values
in the data to a multiple of some millisecond value. The original values
were average latencies for typing specific digraphs, i.e. character pairs. We
found that rounding can be used for anonymizing keystroke latency data,
but the amount of rounding needs to be sufficiently large in order to decrease
identification accuracy. We discovered that whilst identification of students
is no longer possible, programming experience can be inferred with almost
similar accuracy compared to non-anonymized data. The second approach
we studied was anonymizing data by distributing all values in the data into
even-sized buckets. Both identification and programming experience clas-
sification accuracies decreased considerably faster than with the rounding
method. The result therefore indicates that the bucket method is more effi-
cient at anonymizing the data, although more domain relevant information
is lost in the process — when the data was sufficiently anonymized, i.e. stu-
dents could no longer be reliably identified, classification of students into
novices and more experienced programmers was not as accurate as with the
rounding method. The results for both anonymization techniques suggest
that the anonymized typing profiles are no longer a quasi-identifier and thus
do not pose a threat to the privacy of the individuals in the data. This
shows promise of being able to share source code snapshot data openly in
the future as long as other possible explicit and quasi-identifiers are likewise
removed or anonymized adequately. Sharing data would facilitate replica-
tion studies, which in turn would increase the reliability and generalizability
of results. However, careful consideration should be given to anonymization.
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For example, we noticed that the decrease in identification accuracy is not
linear when using the rounding method for anonymization. We propose that
researchers looking into anonymizing their data should not settle for the first
anonymization technique or degree that seems sufficient, but analyze their
choices in great detail to guarantee that they are not merely observing a local
minimum due to the characteristics of the chosen anonymization procedure.

Future work should examine how the methodologies outlined in this work
perform with other identification models, for example other keystroke la-
tency -based models that are not based on euclidean distances and the k-
Nearest-Neighbor classifier. In addition, further research is needed to inves-
tigate whether other information than programming experience can be in-
ferred from anonymized keystroke latency data. Finally, future work should
investigate how removing possible hidden identifiers other than keystroke
latencies — such as text content — affect both identification accuracy and
inference of valuable information.
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