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ABSTRACT
Where should we draw the line of inappropriate conduct on a
course that is given freely to anyone? If an individual starts pro-
fusely swearing on a lecture, they are most likely expelled from
the class or even from the course. But what if they do it outside
the lecture amongst their classmates, amongst a group of anony-
mous individuals – or by themselves? In this article, we study how
students use profanities in source code when they are complet-
ing programming assignments on a massive open online course
(MOOC). We examine how common it is to curse in source code as
well as whether specific assignments incite more cursing than oth-
ers. Additionally, we investigate differences between participants
with regards to cursing. Our results indicate that a considerable
amount of participants write curse words whilst programming, but
most clean their code for the final submission. The data also shows
that there are different degrees of profanity in use, ranging from
quite inoffensive words to offensive racial slurs. Finally, we dis-
cuss options that one may take when individuals who swear are
identified, starting from rescinding their right to study.

CCS CONCEPTS
• Social and professional topics → Codes of ethics; Censorship;
Computer science education;
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1 INTRODUCTION
The dystopian novel Nineteen Eighty-Four by George Orwell [18]
focuses on a society, where even the thoughts of the citizens are
controlled. Specifically assigned thought police – Thinkpol – record
and monitor interactions of the populace through various means,
looking for opinions that challenge the views of the ruling party.
This control and monitoring extends to the subconscious, as even
stress and words that are uttered whilst asleep are monitored.

Although the novel is a work of fiction, the possibility for such
surveillance is a reality [9, 23]. For example, Facebook records the
comments that individuals write but do not post [5], Google records
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whatever is spoken to it [10], and commercial organizations profile
users to determine their interests. This trend is not only visible in
organizations, but also in the lives of individuals – for example,
many wear devices that gather information on physical activities
and provide suggestions based on the data.

Such surveillance data can change the life of a person drastically.
Whilst sports tracking devices typically focus on self-improvement,
recent news has witnessed the use of traces of human behavior in
other ways as well. As an example, a group of newly admitted Har-
vard students had their admissions rescinded after posting offensive
memes in a closed Facebook group [17].

In this article, we take the role of an imaginary thought po-
lice, and use data from a freely available online course to identify
individuals who act against the norms of the society. More specif-
ically, we study participants in a massive open online course on
programming, and look for socially offensive language in their pro-
gramming process. We then identify course-specific factors such
as assignment handouts that may influence the use of profanities,
and subsequently, study the differences between participants who
curse and those who do not.

Our analysis covers both data intended as final products – sub-
missions – as well as the working process – snapshots. The use
of such data is popular within the computing education research
domain where it is used, among other things, for predicting course
outcomes [1, 14]. The studies that are closest to the study presented
here are studies that look into affect – for example, Rodrigo et al.
have used programming process data to identify affective states
such as frustration [19], and Ihantola et al. have used such data to
automatically assess the difficulty of course assignments [12].

This article is organized as follows. In Section 2, we go over
relevant background work on collecting participant data and then
briefly present previous work on affect and socially inappropriate
behavior. Next, in Section 3 we describe the context of the study, the
data used for the study, and our research questions for this work.
In Section 4 we first present our results and then discuss them in
Section 5. Lastly, we conclude this work in Section 6.

2 BACKGROUND
Here, we first describe systems that are used to collect data for
different analytics in the computing education research domain.
Then, we discuss affect and socially inappropriate behavior.

2.1 Collecting participant data
This article focuses specifically on data from students’ program-
ming process, which has been stored for decades by systems that
automatically assess students’ solutions [11]. Initially, these sys-
tems stored submissions, but more recently, an increasing amount
of systems that record the whole programming process have been
developed [13]. These include systems that purposefully focus on
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learning to use the tools that developers use, online systems that
are easy to access and require no downloading of software, and
systems that are specifically designed for novices that highlight
specific parts of a programming language.

Whilst open and semi-open data sets from students’ working
process exist [13], the majority of the data sets are closed to a degree.
For example, the Blackbox-project [4] requires that the researchers
who wish to use the data register and disclose research questions
before gaining access.

From the legal perspective, each country and university has their
own specific ethical rules that control how data can be collected and
used. This is something that is likely to change especially within the
European Union, as the new General Data Protection Regulation
(GDPR) [7] becomes enforceable in May 2018. The GDPR takes a
stance on the responsibilities of parties who either record, store
or process data from individuals, and posit that permission for
gathering data must be explicitly collected. Individuals must be
able to decline data collection, and declining of data collection must
have no detrimental consequences. Moreover, when asking for
permission, explicit information on how the data will be used must
be given, and individuals must be able to have their data removed.

2.2 Affect and socially inappropriate behavior
There exists only a handful of studies that have studied affect within
the computing education domain. These include studies from Ro-
drigo et al. [19] who used observers who marked down instances
of students’ frustrations in a programming lab, and later studied
whether programming process data could be used to detect frus-
tration. Their results showed that a model built from consecutive
syntax errors and the time that it takes to fix them had a weak
correlation with frustration.

Similarly, fine-grained data has been used to determine stress [21],
boredom and engagement [2], and emotional states in general [6].
In some studies, affective states have also been collected via ret-
rospective reports. For example, Bosch et al. [3] studied novices’
emotions and whether specific teaching interventions could alter
them, whilst Ihantola et al. [12] used self-reports on assignment
difficulty in conjunction with programming process data to auto-
matically assess the difficulty of programming assignments – which
can play a role in frustration, flow or boredom.

In our study, we specifically focus on cursing and swearing as
socially inappropriate behavior. Cursing has been studied especially
in the context of verbal fluency, where some studies have been
motivated by the prejudice that cursing is often used to mask a
lacking vocabulary. According to Jay and Jay, this is not true. They
found that individuals who are fluent with taboo words such as
swears are also overall more fluent verbally [15] – at the same time,
whilst research indicates that individuals who swear fluently are
verbally more fluent, one should not draw the conclusion that the
use of profanities is linked with intelligence [8].

3 METHODOLOGY
3.1 Context
The data at our disposal comes from a massive open online course
(MOOC) in programming. The course is given in English, expects no
pre-requisite knowledge, and as is typical for MOOCs, anyone can
attend the course without any type of a fee. The only expectation

is that the participant should have a valid email address and a
computer that he or she can use, and that the participant should
be able to install a programming environment to this computer – a
tutorial for the installation process is provided. Based on Google
Analytics, the majority of the participants come from the United
States of America, United Kingdom, Canada, India and Germany,
but there are visits from over 100 separate countries.

The course material is organized as an online textbook with
embedded assignment handouts. The content is divided into six
logical parts where each part contains a set of materials and as-
signments. The MOOC is self-paced, and in order to proceed to
the next logical part, the participant has to complete at least 85%
of the assignments of the previous part. Each part has a dozen of
programming assignments, all of which are automatically assessed.

During the course, the participants learn the principles of con-
structing object-oriented programs in Java, starting with input and
output in terminal applications, and learning about loops, methods,
lists, objects, and basic algorithms such as sorting and searching. All
of the programming in the course is done within a custom program-
ming environment, which can record data from the participants’
programming process.

3.2 Data and preprocessing
As the participants work on course assignments, their programming
process is recorded by the programming environment, given that
the participants allow it. This means that subsequent program states
are stored, and that the stored data can be used to reconstruct the
programming process. Whilst the participants are encouraged to
enable data gathering in the course for research purposes, it is
not mandatory. The participants are free to enable or disable the
recording at any time of the course, and they can also request for
the deletion of all of their data.

For the present analysis, a subset of 10,000 participants who had
completed at least three course assignments (out of approx. 100
assigments) was selected. For each participant, the final submissions
for each assignment were extracted, and the working process on
each assignment was reconstructed. To focus on deliberate writing,
the working process data was filtered to include only sequential
inserts. Finally, non-alphanumeric characters were replaced with
blanks, and all uppercase words were transformed into lowercase
for case insensitivity.

3.3 Research questions and analysis
The research questions in our study are as follows:

(1) How common is cursing while programming?
(2) Are there assignments in which cursing is more common?
(3) Do all participants curse alike?
For identification of cursing, a profane word list consisting of

86 profane words was manually constructed from a list of over
1300 potentially offensive English words1. These words were then
identified from the participants’ submissions and reconstructed
working processes. To avoid false positives, words similar to what
the students were expected to type – such as hell in “hello world”
and arse in “parse” – were removed from the profane word list.

1The list of potentially offensive words is available at Luis von Ahn’s research group
page at CMU http://www.cs.cmu.edu/~biglou/resources/
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Table 1: Percentage of participants who had curse words in
submissions and snapshots, and the percentage of partici-
pants who were not observed to curse in a written format.

Cursing type Percentage of participants (%)

Cursing in submissions 3.8%
Cursing in snapshots 14.3%

Not cursing 85.7%

To answer the first research question, “How common is cursing
while programming?”, exact matches of words in the profane word
list were looked for in the participants’ submissions and the recon-
structed working process. To answer the second research question,
“Are there assignments in which cursing is more common?”, we ana-
lyzed each individual assignment and identified the proportion of
participants who cursed in the specific assignment. Here, for each
assignment, we only studied those participants who worked on the
specific assignment.

Finally, to answer the third research question, “Do all partici-
pants curse alike?”, we studied participants’ tendencies to curse and
analyzed if cursing is a stable phenomenon across the population,
or if there exist a few individuals who are more prone to cursing
than others. We also study whether cursing is linked to course
completion by determining whether there is a link between the use
of profanities and the quantity of completed assignments.

4 RESULTS
4.1 How common is cursing?
From the 10,000 participants in the data set, 3.8% used profanities
in their submissions, and 14.3% used profanities as a part of their
working process (Table 1). The snapshot data (data that participants
do not explicitly submit for grading) shows that a significantly
larger population writes profanities into their source code than one
would be able to observe solely from submissions.

To seek a deeper understanding on why the participants curse,
a manual analysis of a subsample of the participants’ code was
conducted. The analysis indicates that there is no single common
approach in which the participants use profanities, but that pro-
fanities have multiple roles in the written programs. Profanities
are used in variable names, comments and print statements – both
in the role of debug statements as well as a part of the textual
interfaces intended for the end user.

4.2 Is cursing assignment-specific?
To understand whether cursing could be explained to some de-
gree by assignment-specific difficulty or other assignment-specific
factors, we next analyzed the occurrence of cursing in individual
assignments. For each assignment in the data, the solutions and
working processes of those participants who worked on the assign-
ment were analyzed, and the proportion of participants who cursed
whilst working on the assignment was stored.

The proportion of students who used written profanities during
the working process and in the submissions are plotted in Figure 1.
For the majority of the assignments, less than 0.25% of the active
students include profanities in the submitted assignments, whilst

Figure 1: The proportion of participants who hadworked on
each assignment and written curse words in their submis-
sions and snapshots. Submissions are marked using the red
line, while snapshots are marked using the dotted line.

less than 1% of the active students use profanities while working
on the assignments.

The data has a few noticeable spikes, however. The very first
assignment, or “assignment 0”, has a significant amount of profani-
ties. The assignment is a sandbox assignment without any specified
learning objectives or goals, and the students are not instructed to
submit the assignment. That is, students are free to choose to not
to do anything with the assignment – they are also free to try out
whatever they wish with the assignment.

The second assignment that has a significant amount of profani-
ties is the assignment 22, which is very similar to other assignments
near to it. In the assignment, the students are expected to read input
from the user, and compare the input to another variable. If the
comparison succeeds, the system is supposed to print out a secret
message. The course material, however, states that “Your message
can be whatever you want!” – the data shows that such a note is an
invitation of a bombardment of profanities.

The remaining of the obvious spikes are towards the end of the
course. In these assignments, there is no obvious freedom in terms of
students instructed to type any kinds of messages to the application.
The assignments towards the end of the course are, however, more
complex, and it is likely that they are more challenging for the
students. It is possible that the observed increase in profanity in
some of the latter assignments is due to increased difficulty. The
analysis of difficulty, however, is out of the scope of this article.

4.3 Do all participants curse alike?
To understand how participants use profanities, we studied the
vocabulary of each participant by counting each distinct profanity
that the participant had written. The number of distinct profanities
and the proportion of participants who used a range of distinct
profanities are shown in Table 3. As can be observed from Table 3,
majority of the participants who use profanities use only a few
distinct profanities.



Table 2: The use of distinct profanities while programming
categorized. The percentage of participants that fall into
each category is reported.

Number of distinct profanities % Participants

5 - 0.3%
3 - 4 1.1%
1 - 2 12.9%
0 85.7%

Table 3: The use of distinct profanities while programming
categorized. The average number of assignments completed
by participants in each category is reported.

Number of distinct profanities Avg. completed assignments

5 - 85.5
3 - 4 71.2
1 - 2 71.8
0 47.3

Table 4: The mean and standard deviation of completed as-
signments for those who curse and those who do not.

mean st.dev.

Cursing 72.04 33.40
Non-cursing 47.34 37.12

The category with the most profanities – five or more distinct
profanities – is the smallest, with only a handful of the participants.
The largest vocabulary that an individual showed matched 16 of
the profanities in our profanity word list.

When analyzing the cursing of participants with respect to their
assignment completion rate, we observe that cursing seems to be
linked to increased completion of assignments (Table 3). This means,
that participants who do not curse at all complete less assignments,
whilst the participants with the largest vocabulary also had the
largest assignment completion rate. We decided to conduct a sta-
tistical analysis to study this in more detail. The students were
split into two subpopulations: those who do not curse at all, and
those who cursed at least once in the data. The mean and standard
deviation of completed assignments for both groups is reported in
Table 4.

We conducted a Kolmogorov-Smirnov test [16] to test whether
the subpopulations are statistically significantly different. The re-
sults (D = 0.31, p-value < 0.0001) indicate that there is a statistically
significant difference in regards to completed assignments for the
two groups: those who curse tend to complete more assignments.

5 DISCUSSION
5.1 Profanities and performance
The data shows that the majority of the participants do not use any
of the curse words that appear in our profanity list. Our analysis,

however, only picks up exact matches of words, and for cursing
to be detected, it has to be written. That is, the analysis does not
detect individuals who curse verbally whilst working on course
assignments.

There exists a small handful of participants who have a rather
large cursing vocabulary – the largest such vocabulary consisted
of sixteen distinct curse words. Most of the individuals who curse
use only a few distinct curse words.

The individuals who curse at least once perform on average
better than the individuals who do not curse at all. A statistical
analysis of the correlation between the completed assignments
and the quantity of curse words indicated that those who curse
complete on average 50%more assignments on the course. However,
it is possible that the difference is due to some people dropping
out of the course before they cursed, but who would have cursed
eventually at some point. For example, the assignment that asked
students to type in any type of message had a lot more cursing
when compared to other assignments. Thus, if a student dropped
before that assignment, they were less likely to swear and had fewer
completed assignments.

5.2 On the use of profanities
Avisual analysis showed that profanities are used inmultiple ways –
they are used in comments, debug print statements, variable names,
etc. The participants also use different types of profanities, ranging
from mild profanities to racial slurs. Whilst the majority of the
participants who cursed used profanities only marginally, some of
the participants overflowed their work with profanities.

Profanities were more likely to appear in assignments without
explicit learning objectives, assignments that explicitly stated that
the participants can type in any kind of message that will be shown
to the user, and – likely – in assignments that were more difficult
than others. While in the first two cases, the use of profanities could
be even categorized as joyful, in the third case profanities may have
been used to vent frustration.

5.3 Reacting to profanities
Choosing to penalize each participant who used profanities in the
course would mean penalizing between 4% and 14% of the partici-
pants, depending onwhether private use of profanities is considered.
If someone writes something offensive to the programming envi-
ronment as they are programming, should we take action? Should
we follow the way paved by Harvard [17]; kick the participants out
and ban them from future courses? Or should we educate those
individuals – for example, racist slurs may stem from ignorance
and lack of education.

Not reacting to profanities can be taken as allowing the use of
them, or even encouraging their use. In the case of racially offen-
sive slurs, it could be meaningful to discourage their use through
feedback. Whether it is something that the learning environment –
or instructors – of a MOOC should do remains an open question.

5.4 On the collection and use of such data
While individuals use services and possibly agree to the use of
their data, it is likely that individuals do not realize what is actually
being collected. For example, many believe that Facebook stores



only full messages, while in reality texts that are not submitted are
also collected [5].

It is also likely that the participants in this study –whilst agreeing
to the use of their data for research purposes – do not realize what
is being collected and that the data that they provide also includes
profanities that they write. While we have studied swearing in
source code, analogous analysis could be conducted to deduce e.g.
political opinions from the way how individuals discuss in forums.

With the upcoming GDPR, entities that collect data are expected
to explicitly state why data is collected. At the same time, research
organizations have the possibility of having participants consent
to specific scientific areas, "...with recognised ethical standards for
scientific research" [7].

5.5 Limitations of the study
This study comes with several limitations, which we address here.
First, as we only studied swearing in the English language and
looked for words in a specific profane word list, it is likely that
the actual proportion of participants who curse is larger. Some
participants may have used their native language, some may prefer
to curse using words not in our list, and some may simply have
typos while cursing. Second, the study suffers from a selection bias:
the course under study is a MOOC and we do not know if the results
would apply also in a graded course offered at a University. Third,
our course has not officially prohibited the use of profanities, which
likely would influence the outcomes. On the other hand, prohibition
might not be effective as has been found in e.g. psychology [22]
and plagiarism [20].

6 CONCLUSIONS
In this article, we studied students’ submissions in an online course
and searched for the uses of profanity as an example of socially ques-
tionable behavior. While we have chosen to study programming
process data in an approach that some may consider humorous,
there is a real possibility that a similar analysis is conducted by
someone else and that the results of the analysis are used to inform
decisions pertaining to important aspects of an individual’s life, e.g.
university acceptance or hiring decisions.

A similar analysis as conducted here would be possible for de-
tecting other information in addition to cursing such as uncovering
political opinions, whilst we believe that the data source should be
different from programming data.

Our results hint towards a trend that those who curse at least
once while completing assignments also complete more assign-
ments in total when compared to those who do not curse at all.
However, future research should investigate whether this relation-
ship is simply caused by those completing more assignments having
more opportunities to curse and progressing further in the course
where the more difficult assignments might incite more cursing.

Our future work consists of two separate streams. First, we are
analyzing whether the use of profanities is an indicator of frustra-
tion or difficulty, and at the same time, we are looking to determine
whether the use of profanities in programming is beneficial in terms
of reducing pain and stress related to learning.
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