
Non-restricted Access to Model Solutions: A Good Idea?
Henrik Nygren

University of Helsinki
henrik.nygren@helsinki.fi

Juho Leinonen
University of Helsinki

juho.leinonen@helsinki.fi

Arto Hellas
University of Helsinki

arto.hellas@cs.helsinki.fi

ABSTRACT
In this article, we report an experiment where students in an in-
troductory programming course were given the opportunity to
view model solutions to programming assignments whenever they
wished, without the need to complete the assignments beforehand
or to wait for the deadline to pass. Our experiment was motivated
by the observation that some students may spend hours stuck with
an assignment, leading to non-productive study time. At the same
time, we considered the possibility of students using the sample so-
lutions as worked examples, which could help students to improve
the design of their own programs. Our experiment suggests that
many of the students use the model solutions sensibly, indicating
that they can control their own work. At the same time, a minority
of students used the model solutions as a way to proceed in the
course, leading to poor exam performance.

CCS CONCEPTS
• Social and professional topics→ Computing education.

KEYWORDS
model solutions, introductory programming, sample solutions, self-
regulation

ACM Reference Format:
Henrik Nygren, Juho Leinonen, and Arto Hellas. 2019. Non-restricted Access
to Model Solutions: A Good Idea?. In Innovation and Technology in Computer
Science Education (ITiCSE ’19), July 15–17, 2019, Aberdeen, Scotland UK.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3304221.3319768

1 INTRODUCTION
Students come to introductory programming courses with a wide
variety of backgrounds. Some have programmed before, some have
not, some have studied for years, and some are just starting their
studies. In the same way as students’ backgrounds differ, so do their
approaches to studying. Some are driven to deeply understand
what they are learning, while some put in the minimum effort
needed to complete course work [17, 18]. Some may even avoid
learning altogether through piggybacking or using solutions from
others [1, 13, 22].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ITiCSE ’19, July 15–17, 2019, Aberdeen, Scotland UK
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6301-3/19/07. . . $15.00
https://doi.org/10.1145/3304221.3319768

The difference between solutions from others and examples in
course materials, in the end, is not vast – what matters is what stu-
dents do with the content. Examples in course materials, demonstra-
tions, and worked examples can all be beneficial for learning [8, 23].
Regardless of the source of the examples, for learning to be success-
ful, the student is expected to work on their own solutions, often
following the principles set out by the examples and the teach-
ers [7]. We are interested in seeing what would happen if the use
of “solutions from others” – here, model solutions to programming
problems given by us – would be legitimized, and students could
use the model solutions to support their learning.

Such knowledge is particularly interesting in programming,
where learning – like when learning any complex cognitive skill
– takes plenty of effort and practice [20]. One of the particular
characteristics in programming is that programming languages are
typically highly vulnerable to even small mistakes, and a simple
typo can take a significant amount of time to fix [2, 9]. Further-
more, a single character may change the functionality of a program
completely, or even stop the program from working at all.

In this article, we discuss an experiment where we changed the
dynamics of our introductory programming course and allowed
our students to freely access model solutions. Students could view
the model solution of each course assignment without the need
to complete the assignment or to wait until the deadline of the
assignment passed. This closely resembles the approach taken in e.g.
many primary and secondary education mathematics books, where
students have access to solutions so that they can verify their work.
In our case, however, as we are working with computer programs,
students have the access to full source code which corresponds to
one of the possible ways to solve each particular assignment.

Perhaps the closest match to our experiment is the work on
intelligent tutoring systems [4], some of which allow students to
ask for hints as they are working on problems. A tutoring system
may suggest the next meaningful step, provide guidelines on how
to proceed, or show source code to the student [3, 5, 19]. Intelligent
tutoring systems do, however, often base showing hints or guiding
the students on students’ previous behavior, while in our experi-
ment, students’ behavior does not change whether they have access
to the solutions or not. Moreover, intelligent tutoring systems often
have a vast repository of problems that the student can work on.

This article is organized as follows. Next, in Section 2, we outline
related research onmodel solutions, focusing on the use of examples
in instruction. Then, in Section 3, we outline the overall design of
our experiment, including the study context, data, and the research
questions. This is followed by the methodology and the results of
our experiment in Section 4. In Section 5, we discuss the results and
implications of our experiment, and then in Section 6, we conclude
the article and point possible future directions for the work.

https://doi.org/10.1145/3304221.3319768
https://doi.org/10.1145/3304221.3319768

ITiCSE ’19, July 15–17, 2019, Aberdeen, Scotland UK Nygren et al.

2 BACKGROUND
A model solution, by definition, is a solution to a problem that a
student can use to compare their own solutionwith.Model solutions
are typicallymade available after the student has solved the problem
or worked on the problem for a sufficient time, for example until
the deadline of the problem has passed. The extent to which the
model solution captures the process by which the outcome was
achieved varies greatly. For example, some mathematics books
outline only expected numeric outcomes, while in programming,
model solutions may contain the whole expected source code.

Model solutions are beneficial for verifying results and the thought
process and they can be used to increase reflection. Students may,
for example, compare and contrast their own solution and the solu-
tion given by a teacher. Model solutions are different from students’
own previous work in that, while students’ own previous work can
be similar to model solutions, students have constructed the solu-
tions in their own work either by themselves, in collaboration with
others, or by following an example. It is known that having a repos-
itory of previous self-constructed solutions can be beneficial [11],
as they can then be referred to when facing new problems.

Model solutions can be distinguished from examples. Examples
do not typically contain immediate answers to the problems that
the students are working on but provide similar content that the
student is expected to internalize and then use to solve the given
problems. One should take care, however, as too challenging learn-
ing materials and examples may hinder students’ progress [10],
and the quality of the examples influences the quality of students’
solutions [12]. Two particular types of examples used to support
learning are worked examples [23], which are step-by-step exam-
ples showing how a problem should be solved, and modeling [6, 7],
which means the process of a teacher showing how a particular
task is accomplished. The effectiveness of these approaches is in-
fluenced by students’ attention, effort, and previous knowledge –
for example, guidance that is beneficial for novices may lead to
negative outcomes if targeted to more advanced students [14].

Examples that students are given access to should be relevant to
the task they are working on. Studying an example and completing
an assignment related to the example can lead to better performance,
and working on additional assignments helps learning over viewing
examples [24]. Even if students are given examples of work that
they are expected to do, however, students’ differences influence
how they work with the examples. For example, poorly performing
students may copy content verbatim, while advanced students may
try to solve the subsequent problems themselves but only refer to
examples when stuck, wanting to check a step, or wanting to avoid
a more complex task such as detailed calculation [25].

3 EXPERIMENT DESIGN
3.1 Context and data
Our experiment was conducted in a seven-week introductory pro-
gramming course offered at the University of Helsinki. Students in
the course learn the principles of procedural and object-oriented
programming using Java. The course starts with basic input and
output, conditional statements and loops, and continues with lists.
This is followed by the construction of objects that are mostly used
to represent data. Finally, students learn to use maps and learn

about basic algorithms that are used to search and sort data. The
course has a total of seven programming assignment sets with a
total of 177 programming assignments. Each assignment set cor-
responds to a week in the course and has a deadline. At the end
of the course, students attend an exam. Each assignment has a
corresponding model solution that includes source code of a work-
ing solution to the assignment. The course uses an online course
material with embedded videos, questionnaires, and programming
assignment handouts. The programming assignments are worked
on in a separate programming environment, from where they are
submitted to an automated assessment system that grades the work
and provides feedback to the students (see [28]). There are walk-in
labs that students can attend simply to work on their own or to ask
questions from course assistants and course teachers – the labs are
available for at least 20 hours each week (for more details on the
course organization, see e.g. [26, 27]).

In the previous course iterations, students have been able to view
model solutions to programming assignments once they have either
completed the programming assignment or once the assignment
deadline has passed. In our experiment, we removed the restrictions
that limited access to the programming assignment model solutions.
Instead of students having to complete the assignment or to wait
until the deadline of the assignment set passed, students could
access the model solutions whenever they wished, even before
starting to work on the actual assignment. Direct copy-pasting of
solutions was strongly discouraged, and lectures also discussed the
effort that learning to program requires.

In order to view the model solutions, students had to log in to the
automated assessment system. Every time that a student viewed a
model solution, the system stored the student’s id, the programming
assignment that was viewed, and the timestamp. Similarly, when
students submit their work for grading, the automated assessment
system stores students’ information. In addition to the logs from
the automated assessment system, we have access to the results
of the course, and have conducted semi-formal interviews with 16
students and teaching assistants on the course.

When comparing this iteration of the course to previous itera-
tions, students now were expected to complete 75% of the assign-
ments each week in order to access the course exam and the course
grade was fully based on the exam score, where 40% of the exam
points corresponded to the worst passing grade, and 90% of the
exam points corresponded to the best passing grade. In previous
course iterations, the course grade has been based on a combina-
tion of completed programming assignments and the course exam.
Moreover, in some previous course iterations, students have had
multiple exams during the course, while this iteration had a single
exam. Due to these differences, we discuss the differences between
the grades of different course iterations only briefly.

3.2 Research questions
Studying the data collected during the experiment and the inter-
views, we answer the following research questions: RQ1 How do
students use the opportunity to view model solutions?; RQ2 To
what extent does students’ use of model solutions correlate with
course outcomes?; RQ3 How do students and course assistants
perceive the opportunity to see model solutions?

Non-restricted Access to Model Solutions: A Good Idea? ITiCSE ’19, July 15–17, 2019, Aberdeen, Scotland UK

To answer RQ1, we studymodel solution access logs.We focus on
whether students looked at the model solutions before or after com-
pleting assignments, and analyze whether student sub-populations
differ in their use of model solutions. To answer RQ2, we study the
correlation between model solution use and programming assign-
ment completion as well as model solution use and exam outcomes.
Furthermore, as some of the course participants drop out of the
course, we also study the difference between the model solution us-
age of the population that stays in the course weekly as well as the
population that does not stay in the course. Finally, to answer RQ3,
we analyze the semi-structured interviews that were conducted
with 16 course participants and teaching assistants and highlight
the main themes from those interviews.

In the analysis, we consider a student having viewed a model
solution before completing an assignment if the student has viewed
a model solution before receiving full marks from the assignment.
Similarly, we consider a student having viewed a model solution
after completing an assignment if the student has viewed a model
solution after receiving full marks from the assignment. The grading
is done automatically by the automated assessment system. For our
analysis, we count each view only once. That is, even if a student
views a model solution to a particular assignment multiple times,
it is still counted as a single view.

4 METHODOLOGY AND RESULTS
4.1 Descriptive statistics
In total, 342 students signed up to the course in our University
course registration system. From the 342 students, 314 showed up
and continued to the second week of the course. From the 314, who
we count as having participated, 262 continued working on the
course assignments until the end of the course, and 242 attended
the course exam (77.1% of the participating students). It is possible
that some of the students decided to attend an exam later, to which
we do not have access at the present time.

At the beginning of the first week of the course, students were
asked to provide consent for the use of their data for the analysis.
From the course participants, 206 provided consent. Subsequently,
the analysis focuses on the 206 students. From the 206 consenting
students, 107 identified themselves as female, 92 male and 7 chose
to not to disclose their gender. The median age of the students was
23, average age 25, and approximately 30% of the students had at
least some programming background. From the 206 students, 167
attended the course exam (81.1% of the population who consented
for the analysis).

4.2 Students’ use of the opportunity to view
model solutions

The course has 177 programming assignments distributed across
seven weeks. The earlier weeks of the course have more assign-
ments, but the assignments are smaller in size, while the later weeks
of the course have fewer but larger assignments. This data in com-
bination with model solution usage is summarized in Table 1.

Students use the model solutions less during the earlier weeks of
the course than the latter weeks of the course. During the first week
of the coursewith simple assignments, the average number ofmodel
solutions viewed before completing the assignment was 7.9, which

Table 1: Number of model solutions viewed before and af-
ter completing the programming assignment. Here, # corre-
sponds to the number of programming assignments during
the week and std corresponds to standard deviation.

Before completion After completion
Week # median mean std median mean std

1 42 4 7.9 9.9 1 1.9 3.3
2 33 6 10 10 1 2 3.3
3 34 11 12.6 11 1 2.3 3.9
4 28 8 9.7 8.5 0 1.4 2.9
5 17 8 7.7 6 0 0.8 2.2
6 14 9 8 4.8 0 0.7 1.7
7 9 6 5.5 2.9 0 0.3 0.8

All 177 47 56.6 46.6 5 9.1 14.6

corresponds to approximately 18.8% of the weekly assignments.
During the last week of the course with more complex assignments,
the average number of model solutions viewed before completing
the assignment was 5.5, which corresponds to approximately 61.1%
of the weekly assignments.

Students viewed the model solutions significantly more before
completing programming assignments than after completing pro-
gramming assignments. During the first week of the course, the
average number of model solutions viewed after completing the as-
signment was 1.9, which corresponds to less than 5% of the weekly
assignments. Similarly, during the last week of the course, the
average number of model solutions viewed after completing the
assignment was almost zero.

When considering all the weeks combined (row “All” in Table 1),
students on average viewed 56.6 model solutions before completing
assignments, which corresponds to 32.0% of the total number of
programming assignments in the course. The lower trend in the
number of times that model solutions were viewed after completing
programming assignments was visible here as well. On average,
students viewed a model solution 9.1 times out of the 177 assign-
ments, after completing the assignment, which corresponds to 5.1%
of the total number of programming assignments in the course.

We also studied if the number of model solutions viewed before
completing an assignment could be explained by (1) gender, (2)
previous programming experience, or (3) major. Using Kolmogorov-
Smirnov -test with Bonferroni correction to compare the use of
model solutions before completing the assignment, we found no
statistically significant difference in gender (p = 0.07). There was a
statistically significant difference in the use ofmodel solutionswhen
comparing students with at least some programming experience
to those with no programming experience (p = 0.012); students
with some programming experience viewed less model solutions.
When comparing students’ major, we found a statistically signif-
icant difference in the use of model solutions between students
who major in computer science and students who major in other
subjects (p < 0.001). Computer science majors view fewer model
solutions than students who major in other subjects – students in
other subjects viewed 42% more model solutions before completing
the assignments.

ITiCSE ’19, July 15–17, 2019, Aberdeen, Scotland UK Nygren et al.

4.3 Model solution use and course outcomes
Next, we studied the model solution usage and course outcomes.
We first study the connection between model solution usage and
assignments completed in the course, and thenmodel solution usage
and dropping out of the course. Finally, we study model solution
use and exam outcomes.

First, using Spearman’s rank correlation with Bonferroni cor-
rection, we found no statistically significant correlation between
the number of completed assignments and the number of model
solution views before completing programming assignments (r =
0.08,p = 0.25). There was a moderate statistically significant cor-
relation between viewing the model solutions after completing
programming assignments and the number of completed program-
ming assignments (r = 0.41,p < 0.0001).

Second, we analyzed whether dropping out of the course could
be explained to some extent by viewing model solutions. For each
course week from 1 to 6, we divided the students into two popula-
tions – those who completed assignments in the subsequent week
and those who did not – both populations had completed a compara-
ble number of course assignments in the current week. Then, for the
populations each week, we studied their use of model solutions to
determine if the model solution usage could explain students drop-
ping out. The comparison of the populations was done using the
Kolmogorov-Smirnov test with Bonferroni correction. No statisti-
cally significant difference in terms ofmodel solution usage between
the populations that dropped out of the course and the population
that stayed in the course was observed (week1 −week6,p > 0.05).
Here, however, the average number of students dropping out each
week was 6, which biases the comparison due to the small number.

Finally, we analyzed students’ use of model solutions and exam
outcomes. Focusing on the 167 students in the exam with consent,
we studied the correlation between the number of viewed model
solutions before and after completing the assignments and the
exam outcomes. Using Spearman’s rank correlation with Bonfer-
roni correction, we identified a strong negative correlation between
the number of viewed model solutions before completing assign-
ments and the course exam (r = −0.71,p < 0.0001). There was no
correlation between the number of viewed model solutions after
completing assignments and the course exam (r = 0.01,p = 0.93).
Figure 1 illustrates students’ exam points and model solution views
before completing assignments.

4.4 Students’ and teaching assistants’ views on
the availability of model solutions

We then analyzed the 16 semi-structured interviews with the course
participants and teaching assistants to study how the experiment
was perceived. Overall, feelings were mixed, and the majority of
the interviewed saw both benefits and downsides to the experi-
ment. Here, we first outline the positive observations regarding the
experiment and then discuss the negative observations.

4.4.1 Positive observations. Both students and teaching assistants
felt that model solutions were highly beneficial if not abused – the
importance of self-regulation and meta-cognition rose multiple
times as themes in the interviews, albeit students did not use the
actual terms. Some also pointed out that, when compared to other

0 20 40 60 80 100 120 140 160 180
Model solutions viewed before completing assignment

0

10

20

30

40

50

60

70

80

90

100

Ex
am

po
in
ts

Figure 1: The number of model solution views before com-
pleting an assignment plotted with exam points. Note that a
student may have viewed a model solution for a particular
assignment multiple times, but our analysis calculates that
as a single view event.

courses, they thought more about their learning process due to the
availability of model solutions.

Several mentioned having been stuck for a while at a rather
simple problem, for example due to a typo, which was then easily
noticed and fixed when comparing their solution with the model
solution. Issues with, for example, the expected formatting of the
output could take plenty of time to fix without being able to use the
model solutions. One student mentioned an assignment, where the
program was expected to output "The sum is: " + number and
the student had written "The sum is " + number. The student
pointed out that figuring out the mistake was easy with the model
solution, but that they had spent plenty of time trying to find bugs
in the program logic.

A common theme was also the benefit of studying model solu-
tions. Some pointed out that studying model solutions, either before
or after completing the assignment, provided an opportunity for
reflection. Moreover, model solutions were seen as a good source
for learning and a good source for new approaches to solving a
problem, especially if the students’ own solution was different than
the model solution.

There were also students who had attended the course previously
or who had programmed previously. Some mentioned that the use
of model solutions was a simple way to jump forward in the course
– a student could copy the solution to “a boring problem” and
focus on assignments that they felt were not trivial to them. This
behavior, however, also requires insight into the students’ own level
of competence. Finally, some also pointed out that the availability
of model solutions helped them stay on the course. There were
those who had taken too many courses, and model solutions made
it possible to handle the worst time conflicts. These students often,
however, noted that they would then have to revisit the problems
and do the actual studying afterward.

Non-restricted Access to Model Solutions: A Good Idea? ITiCSE ’19, July 15–17, 2019, Aberdeen, Scotland UK

4.4.2 Negative observations. First, many considered the experiment
very unorthodox and thought about the model solutions as “an easy
way for others to cheat” and “an easy way to lie to yourself”. Some
simply pointed out that they thought that the whole experiment
was “stupid”, often pointing out that the approach was completely
different to what they were used to. Some pointed out that the
availability of model solutions opened a highway on which students
could avoid learning but still proceed in the course, also obfuscating
what was supposed to be learned.

Some noted that the model solutions themselves were not always
helpful. They were highly helpful when fixing simple issues such
as typos and formatting output, but “when the problem was bigger,
the model solution was often of no use”. This was especially evident
in cases, where the student’s own – not yet complete – solution was
very different to the model solution. Here, students could become
even more confused when viewing the model solution.

One unexpected observation came from the teaching assistants.
When compared to the previous course iterations, the attendance
in the walk-in labs had reduced significantly. Where previously the
teaching assistants often had many students to help, the experiment
made the labs feel redundant at times. Many of the students had
replaced the walk-in labs and the teaching assistants with the model
solutions, potentially also removing the possibility to discuss their
solutions with others. Even with this observation, some teaching
assistants pointed out that the availability of model solutions is
not a bad thing by itself, but there should be some way to limit the
access to them – for example, by limiting the number of times that
model solutions could be accessed each week.

5 DISCUSSION
5.1 Model solutions were popular
Overall, the use of model solutions was popular and almost every
student viewed a model solution at least once. On average, students
viewed the model solution of over 50 programming assignments out
of 177 before completing the programming assignment. Students
were more likely to view the model solution of an assignment in the
later weeks of the course than in the earlier weeks. It is possible that
this was caused by the increasing complexity of the assignments.

We also observed that students were more likely to view model
solutions before completing the programming assignment than
after completing the programming assignment. Model solutions
were viewed after completing the assignment significantly fewer
times than before completing the assignment. One should note,
however, that we did not study whether the students who viewed
the model solutions before completing the assignment and the
students who viewed the model solutions after completing the
assignment were the same. That is, for some of the students who
have viewed the model solution before completing the assignment,
viewing the assignment afterward can be redundant. Similarly, there
may be some students who complete the assignment but do not
submit it for grading – instead, they may compare their completed
but not submitted solution with the model solution before actually
submitting the work; our current analysis which is based on the
submission and model solution view timestamps cannot determine
whether such behavior existed.

When looking at the differences in the use of model solutions be-
tween gender, previous programming experience, and major, we did
not identify any significant difference in the use of model solutions
that could be explained by gender. Our analysis, however, showed
that there was a difference in the use of model solutions between
students who have at least some previous programming experience
and those who have no previous programming experience. Simi-
lar difference was identified in students’ majors – students who
major in Computer Science are less likely to view model solutions
than students majoring in other subjects. Computer Science ma-
jors viewed considerably fewer model solutions than others, which
may suggest that the students who major in the subject are more
conscious of their learning, possibly due to knowing that the pro-
gramming course is a prerequisite to many subsequent computer
science courses, but it is possible also that they have more previous
exposure to programming. In our case, the course had also some
students for whom computer science is a mandatory minor – it
is possible that some of these students have sought to put in the
minimum effort to the course through the use of model solutions.

5.2 Model solutions and course outcomes
When analyzing the correlations between the number of assign-
ments the students completed and the number of times the students
viewed model solutions before assignments, no statistically signifi-
cant correlation was identified. However, there was a statistically
significant difference between viewing model solutions after the
assignment and the number of completed assignments. This could
be due to more meticulous students both viewing more model so-
lutions after the assignment and completing more assignments.
Interestingly, viewing model solutions after the assignment was,
however, not correlated with exam scores.

When analyzing course exam outcomes and model solution us-
age, we observed a strong negative correlation between model
solution usage before completing the assignment and overall exam
points. This indicates that the more model solutions students used,
the worse their exam outcome was. When looking at the Figure 1,
we observe that there are also students who do well in the course
even if they use large amounts of model solutions and that there
are students who do poorly in the course even if they do not use
many model solutions. It is possible that the negative correlation
is caused e.g. by worse performing students requiring more help
– and thus consulting the model solutions more. In any case, we
suggest that others attempting a similar experiment should limit
the number of times that model solutions can be viewed.

5.3 Model solutions and our community of
learners

In our courses that are organized using the traditional model, the
walk-in labs have been quite popular with students. Through the use
of the walk-in labs, we have sought to build a community of learners
– a particular type of community of practice [15, 27] where new
students come to the campus as legitimate peripheral participants
and work on the course assignments in collaboration with others.
Having this type of community has also been important as a pool
of potential teaching assistants, and typically active students have
been recruited to be TAs on subsequent courses.

ITiCSE ’19, July 15–17, 2019, Aberdeen, Scotland UK Nygren et al.

In the current experiment, where students were able to look at
the model solutions whenever they wished, the use of the walk-in
labs diminished noticeably. This made the teaching assistants feel
their work as somewhat unnecessary and may have also influenced
whether students come to the campus. It is also possible that some
of the activity that has traditionally been conducted in a physical
classroom has moved to online environments – we have observed
the formation of online communities of learners in the course. The
change in the number of walk-in labs attendants has, regardless,
been so sudden that it is likely that the experiment was the cause.

5.4 A comparison with previous course
iterations

As noted in 3.1, the course organization changed due to the ex-
periment with making model solutions visible for all. Students no
longer were given points towards their grade from completing
course assignments and the students were expected to complete
at least 75% of the weekly assignments to be allowed to attend the
exam. Students have previously had more than one exam during
the course, while in our experiment there was only a single exam
at the end of the course. Also, due to students having just a single
exam at the end of the course, the exam was more challenging as it
covered more content.

When comparing the proportion of students who started the
course and attended the exam, there is no noticeable difference
between the course iterations. In the experiment reported in this ar-
ticle, 77.1% of the students participated in the course exam, while in
the course version from last year, 77.9% of the students participated
in the last exam. The students from the previous year fared better
in their exam, but as the whole exam was different and somewhat
easier than the current exam, a deeper analysis is not meaningful.
The only somewhat comparable question in the (final) exam from
last year and the (only) exam in our current experiment was a vari-
ant of the Rainfall problem [21]. In our experiment, students scored
on average 88.1% in the problem, while the students in the previous
year scored on average 91.8% in the problem.

Over the years, we have collected a set of “unofficial” solutions
to the programming assignments offered in our course. These solu-
tions come from a wide variety of sources ranging from Github and
Pastebin-like services to solutions that students have admitted to
having plagiarized from elsewhere. While in our typical courses a
handful of students are found to have used these unofficial sources,
in the current experiment we did not identify the use of these
sources or plagiarism in the assignments. At the same time, quite a
few of our students did use our official model solutions as a part of
their work. That is, it seems that our experiment moved the source
of the undesirable behavior to a controlled environment.

5.5 Limitations of work
There are limitations in this work, which we outline next. First,
as we did not conduct a randomized controlled trial with the ex-
periment, all of the course participants had the same material and
activities. Thus, it is not possible to say which changes to the course
affected the outcomes themost.We cannot, for example, say to what
extent the model solutions, the different grading criteria, and the
increased mandatory amount of weekly assignments contributed

to students’ behavior. As we recruited the interviewed students
and teaching assistants from the course labs, there is a possible
selection bias. It is possible that the interviewed students were more
active students in the course. We do not, however, have their grade
information and cannot explore this further. Finally, there is a pop-
ulation bias as the study was conducted in Finland, a country with
a rather homogeneous population, which also tends to rank highly
when examining trust between individuals and trust of authorities,
which may influence the use of model solutions – it is not certain
whether the results obtained here generalize to other contexts.

6 CONCLUSIONS AND FUTUREWORK
In this article, we described an experiment where students could
view model solutions to programming assignments whenever they
wished, regardless of whether they had completed the assignment.
Our motivation was to give students the possibility to avoid unpro-
ductive time spent stuck on an assignment and to possibly facilitate
learning. Additionally, having the option could give students more
ownership of their learning, and being able to see an “official” solu-
tion can act as a worked example and reduce unwanted plagiarism.

Our results suggest that if model solutions are made available,
students will use them. In our case, on average, students viewed
the model solution of almost 30% of the course assignments before
completing the assignment. There was no significant difference in
the way how students with and without previous programming
experience used the model solutions, nor was there any significant
difference in gender. We did observe, however, that the students
who are majoring in computer science use the model solutions less
than others, which may suggest that students who know that they
will need the knowledge in the future may control their learning
better. Overall, our experiment also suggests that the more model
solutions the students use before completing assignments the worse
they will perform in the course exam on average.

To summarize, our answers to the research questions are as fol-
lows. RQ1 How do students use the opportunity to view model
solutions? Answer: Many refer to the model solutions when com-
pleting programming assignments. At the same time, very few look
at the model solutions after completing assignments. RQ2 To what
extent does students’ use of model solutions correlate with course
outcomes? Answer: Viewing model solutions before completing as-
signments correlates negatively with course outcomes, while viewing
model solutions after completing assignments seems to not be con-
nected with exam outcomes. RQ3 How do students and course as-
sistants perceive the opportunity to see model solutions? Answer:
Many see benefit in making model solutions available, however, many
also note that students can abuse model solutions.

In our ongoing work, we have chosen not to continue with the
experiment of giving unrestricted access to model solutions. The
main reason for this decision was the observation that students who
used a lot of model solutions performed worse in the course exam.
We do still provide students access to model solutions, but instead
of being able to use them without any constraint, students have
access to a limited number of model solutions during the course
– this may prevent students from abusing the availability of the
model solutions as the limited number of model solutions can be
seen as a scarce resource that students may wish to retain [16].

Non-restricted Access to Model Solutions: A Good Idea? ITiCSE ’19, July 15–17, 2019, Aberdeen, Scotland UK

REFERENCES
[1] Cheryl L Aasheim, Paige S Rutner, Lixin Li, and Susan R Williams. 2012. Plagia-

rism and programming: A survey of student attitudes. Journal of information
systems education 23, 3 (2012), 297.

[2] Amjad Altadmri and Neil CC Brown. 2015. 37 million compilations: Investigating
novice programming mistakes in large-scale student data. In Proceedings of the
46th ACM Technical Symposium on Computer Science Education. ACM, 522–527.

[3] John R. Anderson and Edward Skwarecki. 1986. The automated tutoring of
introductory computer programming. Commun. ACM 29, 9 (1986), 842–849.

[4] Ryan S Baker. 2016. Stupid tutoring systems, intelligent humans. International
Journal of Artificial Intelligence in Education 26, 2 (2016), 600–614.

[5] Peter Brusilovsky and Gerhard Weber. 1996. Collaborative example selection in
an intelligent example-based programming environment. In Proceedings of the
1996 international conference on Learning sciences. International Society of the
Learning Sciences, 357–362.

[6] Allan Collins, John Seely Brown, and Ann Holum. 1991. Cognitive apprenticeship:
Making thinking visible. American educator 15, 3 (1991), 6–11.

[7] Allan Collins, John Seely Brown, and Susan E Newman. 1989. Cognitive appren-
ticeship: Teaching the crafts of reading, writing, and mathematics. Knowing,
learning, and instruction: Essays in honor of Robert Glaser 18 (1989), 32–42.

[8] Vanessa P Dennen and Kerry J Burner. 2008. The cognitive apprenticeship model
in educational practice. Handbook of research on educational communications and
technology 3 (2008), 425–439.

[9] Paul Denny, Andrew Luxton-Reilly, and Ewan Tempero. 2012. All Syntax Errors
Are Not Equal. In Proceedings of the 17th ACM Annual Conference on Innovation
and Technology in Computer Science Education (ITiCSE ’12). ACM, New York, NY,
USA, 75–80. https://doi.org/10.1145/2325296.2325318

[10] Walter Doyle. 1983. Academic work. Review of educational research 53, 2 (1983),
159–199.

[11] Jeremiah M Faries and Brian J Reiser. 1988. Access and use of previous solutions in
a problem solving situation. Technical Report. Princeton University Cognitive
Science Laboratory.

[12] Katherine Fu, Jonathan Cagan, and Kenneth Kotovsky. 2010. Design team con-
vergence: the influence of example solution quality. Journal of Mechanical Design
132, 11 (2010), 111005.

[13] Mike Joy and Michael Luck. 1999. Plagiarism in programming assignments. IEEE
Transactions on education 42, 2 (1999), 129–133.

[14] Slava Kalyuga. 2009. The expertise reversal effect. In Managing Cognitive Load
in Adaptive Multimedia Learning. IGI Global, 58–80.

[15] Jean Lave and Etienne Wenger. 1991. Situated learning: Legitimate peripheral
participation. Cambridge university press.

[16] Michael Lynn. 1991. Scarcity effects on value: A quantitative review of the
commodity theory literature. Psychology & Marketing 8, 1 (1991), 43–57.

[17] Ference Marton and Roger Säljö. 1976. On qualitative differences in learning:
I—Outcome and process. British journal of educational psychology 46, 1 (1976),
4–11.

[18] Paul R Pintrich. 2000. The role of goal orientation in self-regulated learning. In
Handbook of self-regulation. Elsevier, 451–502.

[19] Kelly Rivers and Kenneth R. Koedinger. 2017. Data-Driven Hint Generation in
Vast Solution Spaces: a Self-Improving Python Programming Tutor. International
Journal of Artificial Intelligence in Education 27, 1 (01 Mar 2017), 37–64. https:
//doi.org/10.1007/s40593-015-0070-z

[20] Anthony Robins, Janet Rountree, and Nathan Rountree. 2003. Learning and
teaching programming: A review and discussion. Computer science education 13,
2 (2003), 137–172.

[21] Otto Seppälä, Petri Ihantola, Essi Isohanni, Juha Sorva, and Arto Vihavainen.
2015. Do We Know How Difficult the Rainfall Problem is?. In Proceedings of the
15th Koli Calling Conference on Computing Education Research (Koli Calling ’15).
ACM, New York, NY, USA, 87–96. https://doi.org/10.1145/2828959.2828963

[22] Judy Sheard, Martin Dick, Selby Markham, Ian Macdonald, and Meaghan Walsh.
2002. Cheating and Plagiarism: Perceptions and Practices of First Year IT Students.
In Proceedings of the 7th Annual Conference on Innovation and Technology in
Computer Science Education (ITiCSE ’02). ACM, New York, NY, USA, 183–187.
https://doi.org/10.1145/544414.544468

[23] John Sweller and Graham A Cooper. 1985. The use of worked examples as a
substitute for problem solving in learning algebra. Cognition and instruction 2, 1
(1985), 59–89.

[24] J Gregory Trafton and Brian J Reiser. 1993. Studying examples and solving
problems: Contributions to skill acquisition. In Proceedings of the 15th conference
of the Cognitive Science Society. Citeseer, 1017–1022.

[25] Kurt VanLehn. 1998. Analogy events: How examples are used during problem
solving. Cognitive Science 22, 3 (1998), 347–388.

[26] Arto Vihavainen, Matti Paksula, and Matti Luukkainen. 2011. Extreme appren-
ticeship method in teaching programming for beginners. In Proceedings of the
42nd ACM technical symposium on Computer science education. ACM, 93–98.

[27] Arto Vihavainen, Thomas Vikberg, Matti Luukkainen, and Jaakko Kurhila. 2013.
Massive increase in eager TAs: Experiences from extreme apprenticeship-based
CS1. In Proceedings of the 18th ACM conference on Innovation and technology in
computer science education. ACM, 123–128.

[28] Arto Vihavainen, Thomas Vikberg, Matti Luukkainen, and Martin Pärtel. 2013.
Scaffolding students’ learning using test my code. In Proceedings of the 18th ACM
conference on Innovation and technology in computer science education. ACM,
117–122.

https://doi.org/10.1145/2325296.2325318
https://doi.org/10.1007/s40593-015-0070-z
https://doi.org/10.1007/s40593-015-0070-z
https://doi.org/10.1145/2828959.2828963
https://doi.org/10.1145/544414.544468

	Abstract
	1 Introduction
	2 Background
	3 Experiment Design
	3.1 Context and data
	3.2 Research questions

	4 Methodology and Results
	4.1 Descriptive statistics
	4.2 Students' use of the opportunity to view model solutions
	4.3 Model solution use and course outcomes
	4.4 Students' and teaching assistants' views on the availability of model solutions

	5 Discussion
	5.1 Model solutions were popular
	5.2 Model solutions and course outcomes
	5.3 Model solutions and our community of learners
	5.4 A comparison with previous course iterations
	5.5 Limitations of work

	6 Conclusions and Future Work
	References

