
Identification Based on Typing Patterns
Between Programming and Free Text

Petrus Peltola, Vilma Kangas, Nea Pirttinen, Henrik Nygren, Juho Leinonen
University of Helsinki

Helsinki, Finland
{petrus.peltola,vilma.l.kangas,nea.pirttinen,henrik.nygren,juho.leinonen}@helsinki.fi

ABSTRACT
Identifying people based on their typing has been studied success-
fully in multiple different contexts. Previous research has shown
that identification is possible based on writing predetermined texts
such as typing passwords, free text such as essays, as well based
on writing source code. In this work, we study typing pattern
based identification when the text format and writing environment
change. We replicate two earlier studies which suggested that typ-
ing profile identification works with programming data, and that it
can be applied to a programming exam circumstances with decent
results. Then, we examine how the identification accuracy changes
when the user profiles are built using data from programming, and
the identification is conducted on data from writing free text. Our
results show that the identification accuracy is indeed high within
the context of programming data, but drops when identifying essay
typists based on typing profiles built from their programming data.

CCS CONCEPTS
• Security and privacy→ Biometrics; Pseudonymity, anonymity
and untraceability; • Social and professional topics→ Computer
science education;

KEYWORDS
keystroke dynamics, cross-context identification, replication, source
code snapshots, educational data mining

1 INTRODUCTION
It has been suggested as early as in the 1970s that computer users
could be identified by how they use the keyboard [14]. A number
of methods for identifying computer users based on their typing
patterns have been proposed [5, 12] since. These methods can iden-
tify users rather accurately [1–3, 16], but they center mostly on
freely typed texts such as writing essays. Additionally, there have
been studies on how keystroke based identification performs in the
context of programming [7, 8]. The results of those studies show a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Koli Calling 2017, November 16–19, 2017, Koli, Finland
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5301-4/17/11. . . $15.00
https://doi.org/10.1145/3141880.3141903

reasonable accuracy, although identification has been slightly less
accurate than in studies within the context of freely typed texts.

With the promising results in multiple different contexts, the
question of identifying people from one context to another emerges
as an open problem. The importance of identifying users between
multiple different contexts becomes apparent when the type of
text that the user writes varies greatly. For example, the bulk of a
programming course’s workload usually consists of programming
exercises, but usually at least the exam contains some sort of ex-
planation assignments or other texts written in a natural language.
Thus, in order to fully get the advantage of using typing patterns
as an authentication method on e.g. MOOCs, it would be beneficial
to be able to identify students from one context to another.

This article focuses on the question of whether it is possible to
identify users between different contexts. Users’ typing patterns
are likely to be different depending on whether they are writing
free text or programming. They might also differ in the contexts of
completing programming exercises at home, completing them in an
exam, and writing an essay in an exam in a controlled environment.

This article is organized as follows. First in Section 2 we provide
an overview of previous work done on keystroke based identifica-
tion using free text and programming data. Then in Section 3 we
discuss our data and research methodology. In Section 4 we provide
our results, which are then examined in Section 5 along with the
limitations of our study. Section 6 concludes the article and outlines
possible future work on the subject.

2 RELATEDWORK
Information recorded from typing has mainly been used for iden-
tification and authentication purposes [1, 5, 9, 11, 12]. This infor-
mation includes for example the duration of keystrokes, pressure
of keystrokes, and keystroke latencies. Identifying users via such
measures provides more security for systems that traditionally use
only usernames and passwords for authentication. They can also
monitor the authenticated user and detect if the user changes. It
could be said that if username and password combinations are the
bouncer at the door of an establishment serving alcoholic beverages,
then the continuous examining of keystrokes is the bartender who
refuses to serve to those who are too inebriated. Keystroke analysis
can also be used in online exams as a way of catching potential
plagiarists and cheaters [4].

Digraph latencies are one of the most common features derived
from keystroke data. A digraph is a pair of adjacent characters, for
example, the word “text” has three digraphs in it: “te”, “ex”, and
“xt”. It has been shown that users can be accurately identified using
average digraph latencies [1, 2, 11, 16]. Calculating holding times

https://doi.org/10.1145/3141880.3141903

of keystrokes, average keystrokes per minute and number of errors
have also been considered for identification purposes [13].

Behavioral features such as typing patterns can vary depend-
ing on the context. For example, different types of text have been
shown to have different identification accuracies [11]. Especially
the difference between transcribed or predetermined text, such as
the username and password, and free text, such as essays, has been
studied. In a study by Monrose and Rubin, identifying users with
transcribed text reached an accuracy of 79% whereas using free
text the accuracy decreased significantly to 21% [11]. A possible
explanation of how the context of the experiment can affect the
result, Monrose and Rubin speculate that the decrease might be
caused by the writer having to spend time on coming up with what
to write during essays.

A study by Longi et al. [8] shows that the identity of program-
mers can be detected from keystroke data recorded during program-
ming sessions. They used data from two separate programming
courses and noted that linking the students from one course to
another could be done with an accuracy of 98.6%. This indicates
that keystroke identification could be a considerable way of authen-
tication in, for example, MOOCs.

Keystroke based identification has been successfully used for
students participating in online exams [7, 15]. Leinonen et al. [7]
were able to identify a large portion of the students who took a
programming exam. Their results showed that students can be
identified quite accurately in both controlled and uncontrolled
exam environments. In the controlled exam, the students were in a
computer lab at the university, whereas in the uncontrolled exam
they could choose where they wanted to take the exam.

Typing patterns can also differ when using different keyboards
and changing other factors in the writing environment, such as
exam setting. In their study, Villani et al. [16] used both freely typed
and transcribed text. They could identify 98% of the users who
used only one type of keyboard, but when they were identifying
users from one setup to another, i.e. when the users had different
keyboards in their training and test sets, the identification accuracy
fell to around 60%. When users stayed on the same computer but
switched between the different types of texts, the identification
accuracy decreased by 10%-20%. Thus their results suggest that
changing the writing environment affects the accuracy more than
changing the assignment.

3 METHODOLOGY
3.1 Context
The data for this study comes from a CS1 Java programming course
conducted as a massive open online course (MOOC) that was orga-
nized by University of Helsinki in the spring of 2017. The course
first covered the basics of programming and then delved into object-
oriented programming. The course was targeted at beginners, and
therefore many of the participants had not programmed at all before
the course. The course material consisted of written theory sec-
tions which each covered a certain topic and exercises which were
interspersed with the theory sections. The material was split into
fourteen separate weeks which all had different themes, exercises
and deadlines.

The course included a final exam that was held at university
premises with a basic computer lab setup. The exam was compul-
sory for those who wished to earn credits for the course. In the
three-hour exam, the first 30 minutes were reserved for three essay
questions, and for the last two and a half hours the participants
were able to complete programming assignment questions or revise
their essay answers. Majority of the participants were native in
Finnish, the language the course was held in.

Since the course suffers from a high drop-out rate that generally
affects most MOOCs, only the people who completed both the
course and the final exam at the university premises were included
in this study. The data sets used in this study had 113 students
after preprocessing, except for the last two weeks’ set that had 112
students.

3.2 Research questions
• RQ1. How does the identification accuracy vary between
contexts, i.e. when identifying people in..
– RQ1.1. ..the last two weeks?
– RQ1.2. ..the programming exam?
– RQ1.3. ..the essay questions?

• RQ2. Can you identify students writing an essay based on
programming exam data and vice versa?

To have a large set of data that we can use to build reliable typing
profiles from, we use the programming data of the first 12 weeks
of assignments. This data set is used as a training set for RQ1.

To answer Research Question 1.1, a study by Longi et al. [8] is
replicated. We call these replicated results our “control set” for the
rest of the article. The study determines how identification accuracy
varies between data sets in a relaxed, at-home environment.

For Research Question 1.2, we replicate a study by Leinonen
et al. [7] to determine the effects to identification accuracy when
identifying people in a supervised exam programming environment
based on data from a relaxed at-home programming environment.
We will refer to this set of results as the “exam set”.

With Research Question 1.3, we examine whether people writing
a free text essay assignment in a supervised exam environment can
be identified based on data from a relaxed at-home programming
environment. We will refer to the essay assignment data set as the
“essay set”.

For Research Question 2, the identification accuracy in an exam
environment between different textual contexts, i.e. free text and
programming, is investigated. Questions 1.3 and 2, both of which
concern identifying people between different textual contexts, are
previously unexplored and thus form a novel contribution to the
field of keystroke-based identification.

3.3 Data collection
The programming assignment related data was collected during
the course through a custom IDE plugin. By installing the plugin
to their programming environment, the students gave permission
both to gathering and using their data. The plugin was not required
to be able to partake in the course, but it was obligatory if the
student wished to earn credits for completing the course.

The raw data is collected at the keystroke level and includes
information such as a student identifier, an assignment identifier, a

timestamp, the type of interaction, and any visible change to the
source code in the IDE. Though the interactions included informa-
tion such as when the student changes from the IDE to another
window or returns to IDE, only text inserts and text removals were
relevant for our study.

Data was also collected during the final exam. The data from the
programming exercises was collected with the same plugin that
was used during the course, while the essay data was gathered with
a JavaScript plugin. All the essays were written into a text area in
the webpage that contained a monitoring script which captured all
the changes to the text at the keystroke level.

3.4 Typing profiles
The raw data was converted into typing profiles that include the
users’ average digraph latencies for the 25 most common digraphs
of the test set. We were interested specifically in average digraph la-
tencies, i.e. how long it takes the user to go from one key to another
on average. Digraphs were chosen as the form of identification
due to the results of a study done by Longi et al. [8]. The study
concluded that digraph latencies were distinctly the most accurate
way of identification when compared to the average time the pro-
grammer needs to press any key while typing or to the average
time for each key individually.

The raw data is a full snapshot of the programming environment
at the moment of its timestamp. Thus, it contains unnecessary
information that was excluded for not being relevant to our study.
For the analysis, all the events that consisted of more than a single
keypress were removed. These events can be caused, for example, by
the programming environment’s autocomplete feature that matches
quotes and parentheses. Copy-pasting also shows up as an event
withmultiple keypresses.We also excluded two ormore text remove
events consecutively, since that usually means that the writer has
simply held the backspace button down, and has not actually made
separate keypresses.

Participants were mapped so that for each participant there was
a map of digraph IDs, their total counts – the number of times the
digraph was written – and sums – how long it has taken to write
the digraph in total. We excluded event time differences that were
either below 10 ms or above 750 ms from the collected results, in
order to not include pauses or single character auto inserts by the
IDE in the typing profiles. To get more accurate results, we only
took into account the 25 most common digraphs from each test set,
as previous research has shown that 25 digraphs are enough for
identification and reduce the chance of overfitting to the data [6, 7].

These most common digraphs were then compared to those in
the training data set. The same digraphs were searched from the set,
the total counts and sumswere calculated for each participating user
and the results were normalized to a range from 0 to 1. However,
the essay set’s 25 most common digraphs differ a lot from the exam
set’s most common digraphs due to very different text contexts.
We recognized that this could have possibly distorted the results.
To compensate for that we also decided to study identification
accuracies using the 25 most used digraphs from the intersection
of the exam and essay sets. For the calculation, we first determined
which data set contained less usages for each mutual digraph, and
used that usage count as that digraph’s count when selecting the

25 most used mutual digraphs. This was done so that the 25 most
common mutual digraphs would not include digraphs that were
used several times in one data set and only a few times in the other.
We will refer to these digraphs as the “mutual digraphs”, which are
discussed further in Section 4.

3.5 Data analysis
To identify the students across the different datasets, the Euclidean
distance between the students’ typing profiles was calculated simi-
lar to previous studies by Longi et al. [8] and Leinonen et al. [7].

A typing profile vector has 25 values – the average time it takes
for the typist to type each of the 25 digraphs. For each typing profile
in the test set, we iterated over all the profiles in the training set
and calculated the distances between the two profiles, leaving us
with an ordered list of the closest profiles in the training set for
each test set profile.

Then, to get data about how correctly the student was identified,
we calculated how close their training set profile was to their test
set profile. We iterated over every test set user’s list of closest
training set profiles and looked at the index of the user’s profile in
the training set. The index denotes the relative distance between
the user’s two profiles. For example, a user’s distance could be 3,
which would mean that their training profile was the 3rd closest to
their test profile.

To measure the identification accuracy we defined three different
acceptance thresholds similar to Longi et al. [8] for how close the
user’s training profile is to their test profile: 1, 5 and 10. The thresh-
olds indicate that the training profile is in the closest k estimates.
For example, the threshold of one indicates exact matches, i.e. the
subject’s training set profile was the closest match of all the people
in the training set. Similarly, the threshold of five indicates that the
user is in the five closest training set profiles.

4 RESULTS
The most common digraphs from programming context include for
example i -> n and n -> t, from writing int, and { -> SPACE. These are
much more typical for a programming language than for a natural
language.

The essays were written in Finnish, a language with vast linguis-
tic differences to English, so the digraphs are bound to be different.
The essay set was the smallest, with total digraph usage counts
ranging from about 13 000 to 3000 in the 25 most common digraphs,
while the total usage counts in the exam set range from 15 000 to
just over 3000, and in control set from 25 000 to 10 000. The pecu-
liarity of a natural language compared to a programming language
can also be seen in the number of digraphs containing keypresses
to or from the spacebar. Out of 25, six digraphs contain this event
in the essay set, while in the exam set, SPACE only appears once.

Themutual digraphs show features from both the essay and exam
sets. For example, , -> SPACE is a digraph that is very prominent in
natural languages, but not so much in programming. On the other
hand, the digraph i -> n that is common in source code is included
in the mutual most common digraphs too. The mutual digraphs
are somewhat biased to the exam set, as some digraphs that are
common in the essay set are rarely found in the exam set, which
results in them being excluded.

Table 1: Identification accuracies for the data sets with varying thresholds. Students in the test set were identified based on
typing profiles built from the training set. There were 113 students in all the data sets except the 2 weeks set that had 112.

Index Train set Test set Features Threshold 1 Threshold 5 Threshold 10

1 12 weeks 2 weeks 2 weeks top 25 digraphs 96% 100% 100%
2 12 weeks Exam Exam top 25 digraphs 73% 92% 95%
3 12 weeks Essay Essay top 25 digraphs 50% 83% 89%
4 Exam Essay Essay top 25 digraphs 25% 54% 68%
5 Essay Exam Exam top 25 digraphs 19% 47% 62%
6 Exam Essay Mutual top 25 digraphs 27% 56% 68%
7 Essay Exam Mutual top 25 digraphs 27% 63% 76%

To answer Research Question 1.1 we calculated the identifica-
tion accuracy when identifying between the training set and the
control set, for which the results are shown in Table 1, row 1. The
identification of students between the training and the control set
is very accurate, with about 96% of users being exact matches. The
identification is in around 98% accuracy when examining the two
closest users, leaving only two students out of 112 unidentified. The
number jumps up to a perfect 100% from the four closest users and
beyond. The identification accuracy is generally in line with the
previous findings on the subject [7, 8].

For Research Question 1.2 the programming exam set was used
instead of the control one, for which the results are shown in Table
1, row 2. Identifying students between the training and the exam
set, a drop in the accuracy compared to the control set is observed,
which was predictable and corresponds to the findings of Leinonen
et al. [7]. About 73% of the users were exact matches, around 92%
belonged in the five closest profiles and nearly 95% were found in
the top 10.

Calculations were done similarly for Research Question 1.3, now
using the essay set as the test data. The results are reported in Table
1, row 3. While the accuracy noticeably drops when moving from
assignments to the exam, the fall is even greater with the essay data.
The percentage of exact matches fell to about 50%, top 5 matches
dropped to 83% and top 10 matches to about 89% accuracy.

For Research Question 2, we used the same methods to calculate
accuracy as in the previous sections. First, the essay set was used as a
test set and the exam set as a training set, then vice versa. The results
of the first experiment are in Table 1, row 4. The identification
accuracy drops drastically compared to any other combination of
sets, with only about 25% being exact matches. Almost 54% of the
students were identified with a threshold of 5, and about 68% with
a threshold of 10.

The results of the second experiment, with the exam set as a
test set and the essay set as a training set, are in Table 1, row 5.
The accuracy is still better than random guessing, though it has
fallen to a fraction of the control set accuracy. Around 19% are exact
matches, nearly 47% belong to the five closest profiles and almost
62% to ten closest profiles.

When using the essay data as a test set and the exam data as a
training set for mutual digraphs (Table 1, row 6), approximately
27% of the people were identified with threshold 1, about 56% with
threshold 5 and about 68% with threshold 10. The accuracy in-
creased also when using the exam data as a test set and the essay

data as a training set (Table 1, row 7), compared to when using
the most common digraphs of the exam data instead of mutual
digraphs. Now the accuracy was around 27% with a threshold of
1, nearly 63% with a threshold of 5 and approximately 76% with a
threshold of 10.

5 DISCUSSION
As has been concluded in previous studies [7, 8], identifying stu-
dents within the programming data collected on a course is very
accurate. Since all the exercises are programming tasks and likely
completed within a single context, the resulting typing pattern data
is consistent throughout the whole course. Therefore identification
is feasible, unless there is a drastic change in the user’s setup or
ability to type. Our results aligned with this hypothesis, with our
identification accuracy being even higher than that of previous
studies, possibly due to an increased amount of data.

However, identification gets more difficult when the setup and
conditions change, as seen in the results of Leinonen et al. [7].
This can be due to various reasons, for example the stress of the
exam situation, a different keyboard or other equipment, and the
absence of the course material [3]. In reality, probably all of the
mentioned factors affect the accuracy, along with many things we
have not considered in this study. To actually study just the effect of
a single element changing, e.g. switching a user’s keyboard, further
study needs to be done. Our results were still considerably good,
especially when we raise the identification threshold from exact
matches to five or ten closest matches.

As expected, typing pattern based identification is less accurate
when the data for the training and the test set come from different
contexts, or more specifically, when identifying someone writing a
free text essay based on their typing profile built from programming
assignment data. Our results indicate that especially the accuracy
of exactly identifying someone decreases. As the essay was written
in an exam, the same reasons that we hypothesize reduce identifi-
cation accuracy in an exam scenario apply. Additionally, the essays
are written in Finnish, while Java’s keywords are in English, or
abbreviations resembling English. Thus, the results would possibly
be better if the essays were written in English, as the digraphs are
most likely very different between languages. The most common
digraphs for Java include e.g. the digraph { -> SPACE. Thus, at least
some of the reduction in accuracy would remain even if the essays
were written in English. The Finnish language contains some char-
acters that are not found in English. The course material instructs

not to use these letters in variable or method names, so even if
students use variable or method names in their native language,
the special letters are rarely present in any of the programming
data. These letters occur consistently in the essay data, some even
in the 25 most common digraphs. This is also one of the reasons we
decided to calculate the mutual digraphs for the essay and exam
sets, as their most common digraphs separately are quite different.
The special letters get excluded from the mutual digraphs as their
occurrence in the exam data is very rare.

When comparing essay data to exam data and vice versa, the
environment is exactly the same, but the text content is very dif-
ferent. It is likely that the digraphs that are common in free text
are barely found in programming data, and thus, identification is
harder. Also, the data sets are relatively small, at least compared to
the full twelve weeks of the course, so the count of total occurrences
of any digraph is much smaller. Even so, the results are noticeably
better than completely random matching.

Previous research has excluded users with low event counts [8].
Our data sets were already quite small and the event counts were
reasonable on their lowest so we decided against this, but with
larger datasets it would undoubtedly increase accuracy. The number
of digraphs studied could be adjusted according to the data being
analyzed, since the limit of 25 most common digraphs is an arbitrary
number that has had success in previous studies done on the same
kind and amount of data we have in our study. In this studywe chose
the digraphs with the highest total counts, which could result in
large disparities between the usages of particular digraphs between
users. For example, in a hypothetical scenariowhere a single student
types an obscure digraph for a number of times, it could be included
in the most common digraphs. Previous work on the topic has
avoided this issue by using themedian number of times students use
a particular digraph instead of using the total count [7]. However,
our results are in line with those studies, and thus this does not
seem to be an issue with the data sets used in this study.

Achieving high identification accuracies also poses risks as it
means that the data used to build typing profiles contains personal,
identifiable information. For example, if the data sets used in this
study were released openly, someone who had similar data could
possibly identify people in our data based on their data. This could
be used e.g. for targeted advertising – for example, the context of
our data reveals that the users have attended a MOOC, which could
be used in personalizing advertisements. Recently, approaches to
prevent identification have been proposed [6, 10] to alleviate this
issue, but more research on the topic is needed.

6 CONCLUSIONS
In this study, we successfully replicated two studies concerning
identifying programmers from their typing patterns and identified
students across different textual contexts, from free text to pro-
gramming and vice versa. We conclude that even if cross-context
identification is less accurate than within one context, it still is pos-
sible. This indicates that typing pattern based identification could
be a reliable authentication method even on courses where the
content of the assignments differs: for example, in programming
courses with both coding assignments as well as essays.

For future work, we are interested in studying the limits of typ-
ing pattern based authentication with a larger data set. For example,
relying on a fixed threshold will not work if the number of stu-
dents is increased to thousands. Additionally, we are interested in
examining how different machine learning methods could be used
for typing pattern based identification in addition to the methods
used in this study. Future work should also alter the different envi-
ronment and assignment elements more exclusively to get a better
understanding of just how much a change of environment or going
from one text content to another affects the identification accuracy.

d(p,q) =

√√√ 25∑
i=1

(pi − qi)2

REFERENCES
[1] Paul S. Dowland and Steven M. Furnell. 2004. A Long-Term Trial of Keystroke

Profiling Using Digraph, Trigraph and Keyword Latencies. Springer US, Boston,
MA, USA, 275–289.

[2] R. S. Gaines, W. Lisowski, S. J. Press, and N. Shapiro. 1980. Authentication by
keystroke timing: Some preliminary results. Technical Report.

[3] Daniele Gunetti and Claudia Picardi. 2005. Keystroke Analysis of Free Text. ACM
Trans. Inf. Syst. Secur. 8, 3 (Aug. 2005), 312–347.

[4] Arto Hellas, Juho Leinonen, and Petri Ihantola. 2017. Plagiarism in Take-home
Exams: Help-seeking, Collaboration, and Systematic Cheating. In Proc. of the 2017
ACM Conf. on Innovation and Technology in Computer Science Education (ITiCSE
’17). ACM, New York, NY, USA, 238–243.

[5] M. Karnan, M. Akila, and N. Krishnaraj. 2011. Biometric Personal Authentication
Using Keystroke Dynamics: A Review. Appl. Soft Comput. 11, 2 (March 2011),
1565–1573.

[6] Juho Leinonen, Petri Ihantola, and Arto Hellas. 2017. Preventing Keystroke
Based Identification in Open Data Sets. In Proc. of the Fourth (2017) ACM Conf.
on Learning @ Scale (L@S ’17). ACM, New York, NY, USA, 101–109.

[7] Juho Leinonen, Krista Longi, Arto Klami, Alireza Ahadi, and Arto Vihavainen.
2016. Typing Patterns and Authentication in Practical Programming Exams. In
Proc. of the 2016 ACM Conf. on Innovation and Technology in Computer Science
Education (ITiCSE ’16). ACM, New York, NY, USA, 160–165.

[8] Krista Longi, Juho Leinonen, Henrik Nygren, Joni Salmi, Arto Klami, and Arto
Vihavainen. 2015. Identification of Programmers from Typing Patterns. In Proc.
of the 15th Koli Calling Conf. on Computing Education Research (Koli Calling ’15).
ACM, New York, NY, USA, 60–67.

[9] J Monaco, J Stewart, S.-H Cha, and C Tappert. 2013. Behavioral biometric veri-
fication of student identity in online course assessment and authentication of
authors in literary works in 2013. (01 2013), 1–8.

[10] John V Monaco and Charles C Tappert. 2016. Obfuscating Keystroke Time Inter-
vals to Avoid Identification and Impersonation. arXiv preprint arXiv:1609.07612
(2016).

[11] Fabian Monrose and Aviel Rubin. 1997. Authentication via Keystroke Dynamics.
In Proc. of the 4th ACM Conf. on Computer and Communications Security (CCS
’97). ACM, New York, NY, USA, 48–56.

[12] Alen Peacock, Xian Ke, and Matthew Wilkerson. 2004. Typing Patterns: A Key
to User Identification. IEEE Security and Privacy 2, 5 (Sept. 2004), 40–47.

[13] Mariusz Rybnik, Marek Tabedzki, and Khalid Saeed. 2008. A Keystroke Dynamics
Based System for User Identification. In Proc. of the 2008 7th Computer Information
Systems and Industrial Management Applications (CISIM ’08). IEEE Computer
Society, Washington, DC, USA, 225–230.

[14] R. Spillane. 1975. Keyboard apparatus for personal identification. IBM Technical
Disclosure Bulletin 17, 3346 (1975).

[15] John C. Stewart, John V. Monaco, Sung-Hyuk Cha, and Charles C. Tappert. 2011.
An Investigation of Keystroke and Stylometry Traits for Authenticating Online
Test Takers. In Proc. of the 2011 International Joint Conf. on Biometrics (IJCB ’11).
IEEE Computer Society, Washington, DC, USA, 1–7.

[16] Mary Villani, Charles Tappert, Giang Ngo, Justin Simone, Huguens St. Fort, and
Sung-Hyuk Cha. 2006. Keystroke Biometric Recognition Studies on Long-Text
Input Under Ideal and Application-Oriented Conditions. In Proc. of the 2006
Conf. on Computer Vision and Pattern Recognition Workshop (CVPRW ’06). IEEE
Computer Society, Washington, DC, USA, 39–.

	Abstract
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Context
	3.2 Research questions
	3.3 Data collection
	3.4 Typing profiles
	3.5 Data analysis

	4 Results
	5 Discussion
	6 Conclusions
	References

